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Abstract: In this paper we provide a collocation method for the problem of steady flow of a third grade fluid
i a porous half space. This problem is a non-linear, two-point boundary value problem (BVP) on semi-mmfinmte
mterval. This approach 1s based on a modified generalized L.aguerre which 1s an orthogonal function. We also

present the comparison of this work with solution of other methods; moreover, in the graph of the |[Res|f, we

show that the present solution is more accurate and faster convergence in this problem.
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INTRODUCTION

The flow of non-Newtonian fluids has several
technical applications, especially in the paper and textile
mdustries. Out of many medels which have been used to
describe the non-Newtonian behavior exhibited by certain
fluids. The fluids of the differential type have received
special attention. Fluids of the second and the third grade
have been studied in various types of flow situations
which form a subclass of the fluids of the differential type.
Boundary layer theories for fluid similar to a second grade
fluid have been formulated by Rajeswari and Rathna,
Bhatnagar, Beard and Waiters and Frater. Rajagopal ef al.
developed a boundary layer approximation for a second
grade fluid [1].

The third grade fluid models even for steady flow
exhibits such characteristics. The present study deals
with the problem of non-Newtonian fluid of third grade in
a porous half space. Due to the widespread applications,
tlow through porous media received substantial attention.
The attempts to mclude porous media mn the flows of the
complex fluids need some new physical parameters
besides non-Newtonian fluid parameters. Thus, Darcys
equations or some generalization of it depending on
pressure field, not neglecting porosity, are appropriate to
study this type of flows thorough the porous media which
is rigid or nearly rigid solid. Also the modeling of
polymeric flow in porous space has essential focus on the

numerical simulation of viscoelastic flows mn a specific

pore geometry models, including: capillary tubes,
undulating tubes, packs of spheres or cylinders [2, 3].
Moreover, spectral methods have been successfully
applied in the approximation of differential boundary
value problems defined in unbounded domains.
For problems solutions of which are sufficiently smooth,
they exhibit exponential rates of convergence/spectral
accuracy. The first approach 1s
polynomials [4-6]. The Burgers
Benjamin-Bona-Mahony (BBM) equation on a semi-

infinite interval are two equations that Guo [4] worked

using Laguerre
equation and

them out and suggested a Laguerre-Galerkin method for
them. It is shown that the
approximations are convergent on a semi-infinite interval

Laguerre-Galerkin

with spectral accuracy. In [5] proposed spectral methods
Laguerre functions were used and analyzed for model
elliptic equations on regular unbounded domains. Siyyam
[6] applied two numerical methods for solving initial
value problem differential equations using the Laguerre
Tau method. He generated linear systems and solved
them. Maday et al. [7] proposed a Laguerre type spectral
method for differential equations.
They introduced a general presentation of the method and

solving partial

a description of the derivation discretization matrices and
then determined the optimum estimations in the adapted
Hilbert norms. Recently, in [8] it used the modified
generalized Laguerre.

However, modified generalized
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Laguerre was used befor. The second approach is
reformulating original problem in semi-infinite domain to
singular problem m bounded domain by variable
transformation and then using the Jacobi polynomials to
approximate the resulting singular problem [9]. The thurd
approach 1s replacing semi-nfinite domain with [0, L]
mterval by choosing L, sufficiently large. This method 1s
named domain truncation [10]. The fourth approach of
spectral method is based on rational orthogonal functions
[11]. Boyd [12] defined a new spectral basis, named
rational Chebyshev functions on the semi-infinite interval,
by mapping to the Chebyshev polynemials. Guo et al. [13]
introduced a new set of rational Legendre functions which
is mutually orthogonal in LX0, + =). They applied a
spectral scheme using the rational Legendre fimetions for
solving the Korteweg-de Vries equation on the half line.
Among these, an approach consists i using the
Pseudospectral method based on the nodes of Gauss
formulas related to unbounded intervals [14].

Collocation method has become increasingly popular
for solving differential equations; although, this is very
useful
differential equations. Recently, it was used [14-16].

in providing highly accurate solutions to
In this paper, we aim to employ the collocation
method for solving steady flow of a third grade fluid in a
porous half space: In Section 2, we describe the
mathematical formulation of this problem. In Section 3, we
describe the formulation of modified generalized Laguerre
functions. Section 4 summarizes the application of this
method for solving steady flow of a third grade fluid m a
porous half space. In Section 5, we show results and in
this section a comparison is made with Ahmad solutions.
Conclusions are described in the final section.

Mathematical Formulation: Tn this section we focus on
Hayat et al. [2] who have discussed the flow of a third
grade fluid in a porous half space. For unidirectional flow,
they have generalized the relation [2].
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for a second grade fluid to the followmg modified Darcy’s
Law for a third grade fluid
2
J v (2

(Vp), = (1)

¢

k

Ou

(Vp), = Y

O
+oy—+2
Ui+ oy o ,83[

468

Where u is the dynamic viscosity, # is the denote the fluid
velocity and p 1s the pressure, £ and ¢, respectively
represent the permeability and porosity of the porous half
space which occupies the region y > 0 and a,, 5, are
material constants. Defining non dimensional flud
velocity fand the coordinate z

R L
= fz) vy 3)
Vo =u(0), v="=,

Where # and I represent the kinematic viscosity, the
boundary value problem modeling the steady state flow
of a third grade fluid in a porous half space becomes [2].

F@+of 2@ -y faf -ty flzy=0, (D

S0)=1, f=)=0. (5)
Where &,, b, and &b, are defined as:
_ 68370
b= e ©
by = 2ﬁ3¢V02
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Note that the parameters are not independent, since
b, - by
3 7

The homotopy analysis method for solution of Eq. (4)
found i [2]. Later Ahmad gave the asymptotic form of the
solution and utilize this information to develop a series
solution [17].

Modified Generalized Laguerre Functions: This section
15 devoted to the introduction of the basic notions and
working tools concerning orthogonal modified generalized
Laguerre. Tt has been widely used for numerical solutions
of differential equations on infinite intervals. &
(generalized Laguerre polynomial) is the nth eigenfunction
of the Sturm-Liocuville problem [14, 18, 19]:
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2
x%Lg(x) +{o+1- Jc)%Lz6 {x)+ nLg {(x)=0,

xe[:[o,oo), n=012,. . ®

The generalized Laguerre in polynomial manner are
defined with the following recurrence formula:

%) =1, ©)
Lix(x) =l+o-—=x,

VULZ£ (xX)=(2n—-1+o— x)Lgfl(x) —(n+o— l)Lgﬁz(x),

These are orthogonal polynomials for the weight
function w, = x° ¢ We define Modified generalized
Laguerre functions (which we denote MGLEF) ¢, as
follows [14]:

— exp(—yL 2
¢J,.(x)—exp(2L)LJ,(L), L0 10

This system is an orthogonal basis [20, 21] with

weight function ;- % and orthogonality property [14]:

T'(n+2)
S
' B

{Omotn),, =€ an

Where 8, 1s the Kronecker function.

Function Approximation with Laguerre Functions:
A function fix) defined over the interval I = [0, =) can be
expanded as

+eo
= apx),

=0

(12)

Where

azz<¢“¢i> : (13)

If the infinite series in Eq. (12) is truncated with A
terms, then it can be written as [14]

AN-1
F@= Y ad(x=A"9(), (14)
i=0
with
A = [ana,a5,. ..., (X)]° (15)

Px) = [ (), (). o), ... Dy ()] (16)
Modified Generalized Laguerre Functions Collocation
Method: Laguerre-Gauss-Radau pomnts and generalized
Laguerre-Gauss-type interpelation were mtroduced by
[14, 22-24].
Let

Ry =spanil x,. x"'} (17

we choose the collocation points relative to the zeroes of
the functions [14]

j+1 (18)

Pj(x) = ¢‘j (x)- (T)¢J‘—l(x)-

Let w(x):% and X, J _ 0,1,_,_,N—1, be the N

MGLF-Radau points. The relation between MGLF
orthogonal systems and MGLF integrations is as follows
[14, 25]:

e = DN =2 ) o
! Fiaemwlxide= ;f; (Xw, + [WJf (&)eb,

(19)

Where 0 < & < o and w;j=x; TN+ _
(LN + DUV + Dy 163 717

F=01,2,..N-1. In particular, the second term on the right-
hand side vanishes when flx) is a polynomial of degree at
most 2N-1 [14]. We define

N-1

Iput)= D a8,
i=0

(20)

ttas: Lyu(x) = uix), 7= 01,2, ,N-1.I;u is the orthogonal
projection of # upon R ,; with respect to the discrete mnner
product and discrete norm as [14]:

N-1

(u,v)w,N = Z ulx, Jv(x, )w,, (21)
7=0
1

”"‘HW,N = <“=V>iz,N > (22)

thus for the MGLF Gauss-Radau interpolation we have

<INM°V>W,N = (u, v>w,N’ Tuve Ry (23)
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Solving the Problem with Modified Generalized Laguerre
Functions: To apply modified generalized Laguerre
collocation method to Eq. (4) with boundary conditions
Eq. (5), at first we expand f{z) as follows:

N-1
Inf(2)= a,9,(2),

J=0

@4
To find the unknown coefficients a's, we substitute
the truncated series fz) into Eq. (4) and boundary

conditions in Eq. (5). Also, we define Residual function of
the form

N-1 . N-1 ) N-1 .
Res(z)= D a,0,(:)+H (D a9,(:)* Y a,(:) (25
J=0 J=0 J=0

N-1 N-1 ' N-1
by Y a9, (Y a9, () ~by Y a0, (2),
j=0 j=0 /=0

N-1
D a8, 0=1 (26)
J=0
N-1
D a0;()=0, 27)

J=0

By applying z in Eq. (25) with the N collocation points
which are roots of functions 1% » We have N equations
that generates a set of N nonlinear equations; also, we
have one boundary equation in Eq. (26). Now, all of these
equations can be solved by Newton method for the
unknown coefficients. We must mention Eq. (27) is always
true; therefore, we do not need to apply this boundary
condition.

RESULT AND DISCUSSION

In this paper, we present the results of our research
by N =20, « =1 and L = 0.99 in modified generalized
Laguerre for solving this problem for some typical values
of parameters, b, = 0.6, b, = 0.1 and b; = 0.5. In this
problem the numerical solution of f(0) is important.
Ahmad [17] obtained f(0) by the shooting method
and founded, correct to six decimal positions,
f(0)=-0.678301. We compare the present method with
numerical solution and Ahmad solution [17] in Table 1.
It shows the present method is highly accurate. Also, the
solution is presented graphically in Figure 1.

Table 1. Comparison between MGLF and Ahmad solutions [17] for
b, =0.6,b,=0.1and b;=05with N=20 ¢« =1 and L =0.99

z Ahmad method[17] Present method Numerical[17]
0.0 1.00000 1.00000 1.00000
0.2 0.87220 0.87261 0.87260
0.4 0.76010 0.76063 0.76060
0.6 0.66190 0.66243 0.66240
0.8 0.57600 0.57650 0.57650
1.0 0.50100 0.50144 0.50140
1.2 0.43560 0.43595 0.43590
1.6 0.32890 0.32920 0.32920
2.0 0.24820 0.24838 0.24840
2.5 0.17440 0.17455 0.17450
2.7 0.15140 0.15156 0.15160
3.0 0.12250 0.12261 0.12260
34 0.09234 0.09242 0.09242
3.6 0.08016 0.08024 0.08024
4.0 0.06042 0.06047 0.06047
42 0.05245 0.05250 0.05250
4.4 0.04553 0.04558 0.04558
4.6 0.03953 0.03957 0.03957
4.8 0.03432 0.03435 0.03435
5.0 0.02979 0.02982 0.02982
S(0) -0.681835 -0.678297 -0.678301
1
0.8
0.6
f(z)
0.4
0.2
0 _I T T T T
0 5 10 15 20
7z

Fig. 1: Graph of numerical approximate f{z) by MGLF with
N=20,2=1and L =10.99.
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Fig. 2: Graph of ||Res|* by MGLFs solution.
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Also, the graph of the |[Res|* for MGLF at b, = 0.6,
b, = 0.1 and b,= 0.5 1s shown in Figure 2. This graph
illustrates the convergence rate of the method.

CONCLUSION

In present study, the steady flow of the third grade
fluid in a porous half space is considered using modified
generalized Laguerre method.  Modified
generalized Laguerre functions are orthogonal functions

functions

that solved the system of non-linear differential equations
governing the problem on the semi-infinite domain
without truncating it to a finite domamn. Modified
generalized Laguerre functions were proposed to provide
simple way to improve the convergence of the solution by
collocation method. As a final point, we reported our
numerical finding and demonstrated the present solution
with MGLF was highly accurate.
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