
 

Comparison between Hermite and Sinc collocation 
methods for solving steady flow of a third grade fluid in 

a porous half space 
 

Kourosh Parand 
Department of Computer Science 

Shahid Beheshti University 
Tehran, Iran 

k_ parand@sbu.ac.ir 

Fattaneh Bayat Babolghani 
Department of Computer Science 

Shahid Beheshti University 
Tehran, Iran 

fattaneh.bayat@gmail.com 
 

Abstract—In this paper, we provide a collocation 
method for the problem of steady flow of a third grade 
fluid in a porous half space. This problem is a non-
linear, two-point boundary value problem (BVP) on 
semi-infinite interval. We use two orthogonal functions 
namely Hermite and Sinc functions which will be 
defined as basis functions in this approach and compare 
them together. We also present comparison of these 
works with numerical solution that shows the present 
solutions are accurate and applicable.  
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I. Introduction 

A. Introduction of the problem 
The flow of non-Newtonian fluids has several technical 
applications, especially in the paper and textile industries. 
Out of many models which have been used to describe the 
non-Newtonian behavior exhibited by certain fluids. The 
fluids of the differential type have received special 
attention. Fluids of the second and the third grade have 
been studied in various types of flow situations which 
form a subclass of the fluids of the differential type. 
Boundary layer theories for fluid similar to a second 
grade fluid have been formulated by Rajeswari and 
Rathna, Bhatnagar, Beard and Waiters, and Frater. 
Rajagopal et al. developed a boundary layer 
approximation for a second grade fluid [1]. 
The third grade fluid models even for steady flow exhibits 
such characteristics. The present study deals with the 
problem of non-Newtonian fluid of third grade in a 
porous half space. Due to the widespread applications, 
flow through porous media received substantial attention. 
The attempts to include porous media in the flows of the 
complex fluids need some new physical parameters 
besides non-Newtonian fluid parameters. Thus, Darcys 
equations or some generalization of it depending on 
pressure field, not neglecting porosity, are appropriate to 
study this type of flows thorough the porous media which 
is rigid or nearly rigid solid. Also the modeling of 
polymeric flow in porous space has essential focus on the 
numerical simulation of viscoelastic flows in a specific 

pore geometry models, including: capillary tubes, 
undulating tubes, packs of spheres or cylinders [2, 3]. 

 
B. Spectral method  

Many of the current science and engineering problems are 
set in unbounded domains. In the context of spectral 
methods such as collocation and Galerkin methods [4], a 
number of approaches for treating unbounded domains 
have been proposed and investigated. The most common 
method is the use of polynomials that are orthogonal over 
unbounded domains, such as the Hermite and Laguerre 
spectral method [5-12]. 
Guo [13-16] proposed a method that proceeds by mapping 
the original problem in an unbounded domain to a 
problem in a bounded domain, and then using suitable 
Jacobi polynomials such as Gegenbauer polynomials to 
approximate the resulting problems. The Jacobi 
polynomials are a class of classical orthogonal 
polynomials and the Gegenbauer polynomials, and thus 
also the Legendre and Chebyshev polynomials, are 
special cases of these polynomials which have been used 
in sevral literatures for solving some problems [17, 18]. 
On more approach is replacing infinite domain with 

],[ LL−  and semi-infinite interval with ][0, L  by 

choosing L , sufficiently large. This method is named 
domain truncation [19]. 
There is another effective direct approach for solving such 
problems which is based on rational approximations. 
Christov [20] and Boyd [21, 22] developed some spectral 
methods on unbounded intervals by using mutually 
orthogonal systems of rational functions. Boyd [21] 
defined a new spectral basis, named rational Chebyshev 
functions on the semi-infinite interval, by mapping to the 
Chebyshev polynomials. Guo et al. [23] introduced a new 
set of rational Legendre functions which are mutually 

orthogonal in )(0,2 ∞L . They applied a spectral scheme 

using the rational Legendre functions for solving the 
Korteweg-de Vries equation on the half-line. Boyd et al. 
[24] applied pseudospectral methods on a semi-infinite 
interval and compared rational Chebyshev, Laguerre and 
mapped Fourier sine methods. 
Parand et al. [25-30], applied spectral method to solve 
nonlinear ordinary differential equations on semi-infinite 
intervals. Their approach was based on rational tau and 
collocation methods. 
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In this paper, we are going to solve the model Eq. (1) 
numerically by using two orthogonal functions, namely 
Hermit function and Sinc function in collocation method 
and compare our result together. we also have a 
comparison with solutions of [31]. 
Sections III and V review the desirable properties of 
Hermit function and Sinc function with solution of the 
problem with collocation method by these functions, 
respectively. In Section VII we describe our results via 
tables and figures. Finally, concluding remarks will be 
presented in Section VIII. 
 

II. Mathematical formulation 
In this section we focus on Hayat et al. [2] who have 
discussed the flow of a third grade fluid in a porous half 
space. For unidirectional flow, they have generalized the 
relation [2] 
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for a second grade fluid to the following modified 
Darcy’s Law for a third grade fluid 
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where µ  is the dynamic viscosity, u  is the denote the 

fluid velocity and p  is the pressure, k  and ϕ , 

respectively represent the permeability and porosity of the 
porous half space which occupies the region 0>y  and 

1α , 3β  are material constants. Defining non dimensional 

fluid velocity f  and the coordinate z  
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where ν  and 0V  represent the kinematic viscosity, the 

boundary value problem modeling the steady state flow of 
a third grade fluid in a porous half space becomes [2] 
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Where 1b , 2b  and 3b  are defined as: 
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Note that the parameters are not independent, since 
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The homotopy analysis method for solution of Eq. (1) 
found in [2]. Later Ahmad gave the asymptotic form of 
the solution and utilize this information to develop a 
series solution [31]. 
 

III. Hermite function 
This section are devoted to elaborate the properties of 
Hermite functions. First of all, we should mention 
Hermite polynomials are generally not suitable in practice 
due to their wild asymptotic behavior at infinities [32]; 
therefore, we shall consider the Hermite function. The 
normalized Hermite functions of degree n  is defined by 
[33]  
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That }
~

{ nH  is an orthogonal system in )(2 ℜL . 

In the contrary to Hermite Polynomials, the Hermite 
functions are well behaved with the decay property:  
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 and, the three-term recurrence relation of Hermite 
functions implies [33]  
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For more details you can study [33-35]. 
Steady flow problem is defined on the interval )(0,+∞ , 

but Hermite functions are defined on the interval 
),( +∞−∞ . One of the approaches to construct an 

approximation on the interval )(0,+∞  is using mapping 

that is changing variable of the form [33]  

),(
1

=)(= zln
k

zw Φ  

where k  is a constant. 
The transformed Hermite functions are  
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 The inverse map of )(= zw Φ  is  

.=)(= 1 kwewz −Φ  

 Therefor, we may define the inverse images of the spaced 

nodes 
+∞

−∞

=

=}{ jx

jxjx  as [33]  
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 and  

Int'l Conf. Scientific Computing |  CSC'13  | 179



 

K0,1,2,=  ,=)(=~ 1 jexx jx

jj
−Φ  

 Let )(xw  denotes a non-negative, integrable, real-

valued function over the interval Γ , We define [33]  
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 This system is complete in )(2 ΓwL . Therefore, for any 

function )(2 Γ∈ wLf  the following expansion holds [33]  
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Now we define an orthogonal projection based on the 
transformed Hermite function as given below [33]. 
Let  
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mapping in a way that for any )(2 Γ∈Ly  [33],  
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IV. Solving the problem with Hermite 
function 

For solving Steady Flow Problem, we used )(
1

zln
k

 for 

changing variable. Also, because of boundary conditions, 
we set following function:  
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 and λ  is constant. 
Finally, we have  
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 To find the unknown coefficients ia ’s, we substitute the 

truncated series )(ˆ zfNξ  into Eq. (1). Also, we define 

Residual function of the form  
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By applying z  in Eq. (2) with the N  collocation points 
which are roots of transformed Hermite function, we have 
N  equations that generates a set of N  nonlinear 
equations. Now, all of these equations can be solved by 
Newton method for the unknown coefficients.  
 

V. Sinc function 
The Sinc function is defined by [36] 
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For each integer k and the mesh size h , the sinc 

functions are defined on ℜ by [37] 
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Steady flow problem is defined on the interval )(0,+∞ , 

but Sinc functions are defined on the interval ),( +∞−∞ . 

One of the approaches to construct an approximation on 
the interval )(0,+∞  is using mapping that is changing 

variable of the form 
)),ln(sinh()( xzw =Φ=  

The basis functions on )(0,+∞ are taken to be composite 

translates Sinc functions [36]: 
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Where )(),( xhkS Φo is defines by ))()(,( xhkS Φ . The 

inverse map of )(zw Φ= is [38] 
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Let )(xw denotes a non-negative, integrable, real-valued 

function over the interval ),0( +∞ . We define [36]: 
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is the norm induced by the inner product of the space 
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VI. Solving the problem with Sinc 
function 

For solving Steady Flow Problem, we used ))ln(sinh(z  

for changing variable. Also, because of boundary 
conditions, we set following function:  
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To find the unknown coefficients ic ’s, we substitute the 

truncated series )( jN zf  into Eq. (1). Also, we define 

Residual functions of the form  
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We have 12 +N  nonlinear equations. Now, all of these 
equations can be solved by Newton method for the 
unknown coefficients.  
 

VII. Result 
In this paper, we present the results of our research about 
Hermite function by ,16=N ,2.1=k  and 678301.0=λ
and Sinc function by ,17=N ,1=h and 47.0=λ for 

solving this problem for some typical values of 
parameters, ,6.01 =b ,1.02 =b and 5.03 =b . In this 

problem the numerical solution of )0('f  is important. 

Ahmad [31] obtained )0('f  by the shooting method and 

founded correct to six decimal positions
-0.678301.)0(' =f  

We compare the present methods with numerical solution 
and Ahmad solution [31], also we compare them with 
each other in Table 1. Also, the solutions are presented 
graphically in Figure 1 and Figure 2. 
 
Table 1. Comparison between Hermite function, Sinc Function, 
Ahmad method [31], and Shooting method [31]. 
 

Shooting [31] Ahmad [31] Sinc 
function 

Hermite 
function 

z 

1.00000 1.00000 1.00000 1.00000 0.0 
0.87260 0.87220 0.87278 0.87261 0.2 
0.76060 0.76010 0.76035 0.76064 0.4 
0.66240 0.66190 0.66178 0.66243 0.6 
0.57650 0.57600 0.57597 0.57647 0.8 
0.50140 0.50100 0.50115 0.50139 1.0 
0.43590 0.43560 0.43583 0.43591 1.2 
0.32920 0.32890 0.32905 0.32917 1.6 
0.24840 0.24820 0.24802 0.24839 2.0 
0.17450 0.17440 0.17426 0.17459 2.5 
0.15160 0.15140 0.15141 0.15161 2.7 
0.12260 0.12250 0.12265 0.12270 3.0 
0.08024 0.08016 0.08025 0.08036 3.6 
0.06047 0.06042 0.06033 0.06060 4.0 
0.05250 0.05245 0.05233 0.05261 4.2 
0.04558 0.04553 0.04543 0.04567 4.4 
0.03957 0.03953 0.03948 0.03964 4.6 
0.03435 0.03432 0.03434 0.03440 4.8 
0.02982 0.02979 0.02987 0.02984 5.0 

-0.678301 -0.681835 -0.677843 -0.678301 )0('f  
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Figure 1. Graph of numerical approximate )(zf by Hermite 

function 
 

 
Figure 2. Graph of numerical approximate )(zf by Sinc function 

 

VIII. Conclusions 

In this paper, we applied the collocation method to solve 
the steady flow of the third grade fluid in a porous half 
space. This method is easy to implement and yields the 
desired accuracy. An important concern of collocation 
approach is the choice of basis functions. The basis 
functions have three different properties: easy 
computation, rapid convergence and completeness, which 
means that any solution can be represented to arbitrarily 
high accuracy by taking the truncation N  to be 
sufficiently large. We used two set of orthogonal 
functions as the basis function in this method and 
compared the results together. Through the comparisons 
among the numerical solutions [31] and the current 
works, it has been shown that the present works have 
provided acceptable approach for this type equation. 
Although both functions lead to more accurate results, but 
it seems that the accuracy and rapidity of Hermite 
function is better than Sinc function in this problem.  
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