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Abstract—In this paper, we provide a collocation
method for the problem of steady flow of a third grade
fluid in a porous half space. This problem is a non-
linear, two-point boundary value problem (BVP) on
semi-infinite interval. We use two orthogonal functions
namely Hermite and Sinc functions which will be
defined as basis functionsin this approach and compare
them together. We also present comparison of these
works with numerical solution that shows the present
solutions are accurate and applicable.
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pore geometry models, including: capillary tubes,
undulating tubes, packs of spheres or cylinders [2, 3].

B. Spectral method

Many of the current science and engineering problems are
set in unbounded domains. In the context of spectral

methods such as collocation and Galerkin methods [4], a
number of approaches for treating unbounded domains
have been proposed and investigated. The most common
method is the use of polynomials that are orthogonal over
unbounded domains, such as the Hermite and Laguerre
spectral method [5-12].

Guo [13-16] proposed a method that proceeds by mapping
the original problem in an unbounded domain to a

problem in a bounded domain, and then using suitable
Jacobi polynomials such as Gegenbauer polynomials to
approximate the resulting problems. The Jacobi
polynomials are a class of classical orthogonal
polynomials and the Gegenbauer polynomials, and thus
also the Legendre and Chebyshev polynomials, are
special cases of these polynomials which have been used
sevral literatures for solving some problems [17, 18].

On more approach is replacing infinite domain with
and semi-infinite interval with[0, L] by

. Introduction

A. Introduction of the problem

The flow of non-Newtonian fluids has several technical
applications, especially in the paper and textile industries
Out of many models which have been used to describe t
non-Newtonian behavior exhibited by certain fluids. The
fluids of the differential type have received special
attention. Fluids of the second and the third grade hasz_L’ L]
been studied in various types of flow situations whichchoosing L, sufficiently large. This method is named
form a subclass of the fluids of the differential type. domain truncation [19].

Boundary layer theories for fluid similar to a second There is another effective direct approach for solving such
grade fluid have been formulated by Rajeswari andproblems which is based on rational approximations.
Rathna, Bhatnagar, Beard and Waiters, and FrateiChristov [20] and Boyd [21, 22] developed some spectral
Rajagopal et al. developed a boundary layermethods on unbounded intervals by using mutually
approximation for a second grade fluid [1]. orthogonal systems of rational functions. Boyd [21]
The third grade fluid models even for steady flow exhibitsdefined a new spectral basis, named rational Chebyshev
such characteristics. The present study deals with th&inctions on the semi-infinite interval, by mapping to the
problem of non-Newtonian fluid of third grade in a Chebyshev polynomials. Guo et al. [23] introduced a new
porous half space. Due to the widespread applicationsset of rational Legendre functions which are mutually
flow through porous media received _su_bstantial atte”tionorthogonal in LZ(O,OO). They applied a spectral scheme
The attempts to include porous media in the flows of the

complex fluids need some new bphvsical parameter using the rational Legendre functions for solving the
besiges non-Newtonian fluid aram%t?e/rs Thﬂs Darc ?orteweg-de Vries equation on the half-line. Boyd et al.
P ' ’ Y 24] applied pseudospectral methods on a semi-infinite

equations or some gene_rallzatlon_ of it dependmg Mnterval and compared rational Chebyshev, Laguerre and
pressure field, not neglecting porosity, are appropriate tg

; . . d Fourier sine methods.
study this type of flows thorough the porous media which'2PpPe X
is rigid or nearly rigid solid. Also the modeling of Parand et al. [25-30], applied spectral method to solve

. . . onlinear ordinary differential equations on semi-infinite
polymeric flow in porous space has essential focus on th%’ltervals Their ay roach was gased on rational tau and
numerical simulation of viscoelastic flows in a specific ) PP

collocation methods.
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In this paper, we are going to solve the model Eq. (1) pv?
numerically by using two orthogonal functions, namely b, = KV2
Hermit function and Sinc function in collocation method 0
and compare our result together.
comparison with solutions of [31].
Sectionslll and V review the desirable properties of

Hermit function and Sinc function with solution of the b, :%,
problem with collocation method by these functions, 3

respectively. In SectioWll we describe our results via _ )
tables and figures. Finally, concluding remarks will be The homotopy analysis method for solution of Eq. (1)
presented in Sectiov|1. found in [2]. Later Ahmad gave the asymptotic form of

the solution and utilize this information to develop a
series solution [31].

we also have . .
%Iote that the parameters are not independent, since

. Mathematical formulation
In this section we focus on Hayat et al. [2] who have 1 H ite f .
discussed the flow of a third grade fluid in a porous half : ermite function

space. For unidirectional flow, they have generalized thel his section are devoted to elaborate the properties of
Hermite functions. First of all, we should mention

relation [2] ! ! ' ) )
Hermite polynomials are generally not suitable in practice
9 due to their wild asymptotic behavior at infinities [32];
__HP O - : :
Op), = ” (1+ 3 u, therefore, we shall consider the Hermite function. The
H ot normalized Hermite functions of degra® is defined by
33
for a second grade fluid to the following modified [33] 2
Darcy’s Law for a third grade fluid H, = 1 ez H, ) nz0x00.
JZTn!

That{H,} is an orthogonal system it ((]).

In the contrary to Hermite Polynomials, the Hermite

H < the d o ) s the d H functions are well behaved with the decay property:
where 4 is the dynamic viscosityu is the denote the 3
s Y g [H, €k 0,as x|,

fluid vglouty and p is the pre§§ure,k and.¢, and, the three-term recurrence relation of Hermite
respectively represent the permeability and porosity of thgynctions implies [33]

porous half space which occupies the regipr> O and

a,, B, are material constants. Defining non dimensional A . (x) = x [ 2 A (x) - [.n A (), n21
n+l n+l n n+1 n-1 1 -
>(2 2

__9 ou ou,,
(Op), = k[uu+a1 p +2ﬁ3(6y) ul,

fluid velocity f and the coordinate

H~0 (x)= e_T, H~1 x)= \/Exe%.

_VO f _— u
=, @)= v, For more details you can study [33-35].
U Steady flow problem is defined on the inten{él,+o0),
Vo =u(0), v :;' but Hermite functions are defined on the interval

(—00,+0). One of the approaches to construct an

where v and V, represent the kinematic viscosity, the approximation on the interva(0,+c0) is using mapping
boundary value problem modeling the steady state flow ofhat is changing variable of the form [33]

a third grade fluid in a porous half space becomes [2] w=d(z) = }In(z)
k 1
wherek is a constant.
f"(@2)+bf'?(@2)f" (2)-b,f (2)f'*(@2)-b,f (z) =0, The transformed Hermite functions are
f (0)=1, f(w)=0. (1) H, (%) = H,(X) e ®(x) = H, (P(x)),
The inverse map oiv = ®(2) is
Whereb,, b, and b, are defined as: z=0(w) =&
Therefor, we may define the inverse images of the spaced
4 . =+00
b = 66 , nodeq Xj}X’_ -, as[33]
uv? j
— -1 . —
b, = 2BPV7 M={®™(t): -0 <t < +00} =(0,+),

Ky and
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ij = &; ):exj ,j =0,1,2,.. To find the unknown coefficient&, ’s, we substitute the
Let W(X) denotes a non-negative, integrable, real-truncated seriesf, f(z) into Eqg. (1). Also, we define
valued function over the intervdl , We define [33] Residual function of the form
, _ Res(z) = (p"(2) +$y f"(2) + b (P'(2)
L5(M) ={v:I - R|vismeasurableand|v|, < oo}, S N () 4§
o LF @ (@ +E1() @
o 3 =b,(p(2) + &\ F ()P (2) + &, T'(2))
M, =, Vo0 P wed)?, ? i, "
is the norm induced by the inner product of the space —by(p(2) +¢\ f (2)) =0.
sz(l—) [33] By applying z in Eqg. (2) with theN collocation points
' which are roots of transformed Hermite function, we have
<u,v> ='[mu(x)v(x)w(x)dx. N equations that generates a set WNf nonlinear
W Jo

R equations. Now, all of these equations can be solved by
Thus{H (X)} oy denotes a system which is mutually Newton method for the unknown coefficients.

orthogonaIA .
(Ho (9, Hin (g = V700 V. Sincfunction

_ . 2
Th t let ['). Therefore, f
'S sysiem Is complete "ILW( ) erefore, for any The Sinc function is defined by [36]

function f (JL2(") the following expansion holds [33] sing®) g
Snc(x) = X
+N " TX
fo) O fH, (%), 1 x=0
k=-N For each integerkand the mesh sizeh, the sinc

with R functions are defined ohl by [37]

f _ <f(x)|Hk(X)>w(x) . 7T

k= - 2 sinC—(x —kh))

o)., e X—kh | —h x# kh
. o S (h,x) = Sinc( )=

Now we define an orthogonal projection based on the E(X_ kh)
transformed Hermite function as given below [33]. 1 x = kh
Let

Steady flow problem is defined on the inter(fl,+oo) ,
H, = span{ H,(x), H,(x)...., H (X} but Sinc functions are defined on the inter{ako,+c) .

2 i E L2 o0 One of the approaches to construct an approximation on
g :
The L(I") -orthogonal projectiorf, : L*(F) - H, isa . e _ _ _
the interval (0,+0) is using mapping that is changing

L 2
mapping in a way that for any JL"(I") [33], variable of the form

(éyy-y® =0 OpOH,, w=® ()= In(sinh{),
or equivalently, The basis functions o(O,+oo) are taken to be composite

translates Sinc functions [36]:

~ N ~
X) = > aH,(x. _
Y09 =2 AH (9 .00 Sl 00 = S 2

V. Solving the problem with Hermite  where s, hy- d(x)is defines by sk, h)(®(x)). The

function inverse map ofy = ®(2) is [38]
For solving Steady Flow Problem, we us&dn(z) for z=07 (W) =In(e" +ve* +1).
k
changing variable. Also, because of boundary conditions-,rhus’ . @ —
we set following function: X =@ (kh) =InE€" +ve™ + )k = 0x1+2,...
p(2) = 1 Let w(x)denotes a non-negative, integrable, real-valued
1+Az+2% function over the interva(0,+o) . We define [36]:
and A is constant. , _
Finally, we have L2(M) :{v: r- D‘v is measurableand |v|, < oo}-
$nf(2)=p(2 +< f(2) Where

" M, = (Moo
- N = (] v(X)| " w(x)dx)?,
5Nf(2):ZéiHi(Z)- "
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is the norm induced by the inner product of the spacer, fing the unknown coefficient§, 's, we substitute the

(M)
= Tu(x)v(x)w(x)dx.

Thus, {g(x)}kmzwith constanth denotes a system which
is mutually orthogonal [36]:

(8, (0.5, ()0 = NSy
for any function fOL(I),
expansion holds [36]:

f(x) O i f S (X).

In addition, the nth derivation of the functiohat some

Now, the following

point X, can be approximated [36, 39]

50 - 1 k=j
[Stk.h)e @X)] |y —{0 <
0  k=j
(1)_1 o :E —1)1-k
3 = 5 1SM oDl = (jlzk Kt
5k<z>: [S(k 0o @] ley, =5 3 .
J 122007 s
(i-k)?
VI. Solving the problem with Sinc

function

For solving Steady Flow Problem, we uskfsinh(z))

for changing variable. Also, because of boundary
conditions, we set following function:
p(z)—;
1+ Az+ 2%

and A is constant.
Finally, we have

f(z) Ufy(2) = p(2) +uy(2),
that

0@ =3 ¢ 50

A+
The collocation points are

z, = In@" ++/1+€*"),j =-N

And the derivations ofi (z) are
1

cz
{(1+ z

i%
N {( -6z

z,®'(z;)
© 4 (Zi o)
(1+z) 2% ¥ ( 1+2 )Jk’}'

) (0)

u'y (7)) =

z+1
Z (1+ Z2)2 (1+ 22)3

20'(z;) 4zje' (z), 2 (z )

ZJ( ( )) 5
1+ @+z7)* 1+ '

J

) (l)

+(

+(

truncated serlest(zj) into Eq. (1). Also, we define
Residual functions of the form

'y (2)+b(F'y () 1 (2)
b,y )y @) ~byfy )= 0] =-N, .. +N.
We have 2N +1 nonlinear equations. Now, all of these

equations can be solved by Newton method for the
unknown coefficients.

VII.

In this paper, we present the results of our research about
Hermite function byN =16 k=12, and A = 0678301

and Sinc function byN =17 h=1and A = 047for
solving this problem for some typical values of
parameters, b =06,b,=0Land b, =05. In this
problem the numerical solution of '(0) is important.
Ahmad [31] obtainedf'(0) by the shooting method and

founded correct to six decimal  positions
f'(0) =-0.678301.

We compare the present methods with numerical solution
and Ahmad solution [31], also we compare them with
each other in Table 1. Also, the solutions are presented
graphically in Figure 1 and Figure 2.

Result

Table 1. Comparison between Hermite function, Sinc Function,
Ahmad method [31], and Shooting method [31].

Shooting [31] | Ahmad [31] Sinc Hermite z
function function

1.00000 1.00000 1.00000 1.00000] 0.4
0.87260 0.87220 0.87278 0.87261] 0.7
0.76060 0.76010 0.76035 0.76064 0.4
0.66240 0.66190 0.66178 0.66243 0.4
0.57650 0.57600 0.57597 0.57647 0.9
0.50140 0.50100 0.50115 0.50139 1.4
0.43590 0.43560 0.43583 0.43591] 1.2
0.32920 0.32890 0.32905 0.32917 1.4
0.24840 0.24820 0.24802 0.24839 2.
0.17450 0.17440 0.17426 0.17459 2.5
0.15160 0.15140 0.15141 0.15161] 2.1
0.12260 0.12250 0.12265 0.12270Q 3.4
0.08024 0.08016 0.08025 0.08036 3.6
0.06047 0.06042 0.06033 0.06060 4.
0.05250 0.05245 0.05233 0.05261] 4.2
0.04558 0.04553 0.04543 0.04567 4.4
0.03957 0.03953 0.03948 0.03964 4.4
0.03435 0.03432 0.03434 0.03440 4.9
0.02982 0.02979 0.02987 0.02984 5.0
-0.678301 -0.681835 -0.677843 -0.678301 f'(0)




182 Int'l Conf. Scientific Computing| CSC'13 |

References

1 [1] V.K.Garg, K.R. Rajagopal, 1990. Stagnation point flow of a non-

) newtonian fluid, Mech. Res. Comm. 17: 415-421.

| [2] T. Hayat, F. Shahzad and M. Ayub, 2007. Analytical solution for the

] steady flow of the third grade fluid in a porous half space, Appl. Math.

064 Model. 31: 2424-2432.

1 [3] T. Hayat, F. Shahzad, M. Ayub and S. Asghar, 2008. Stokes first

f{z) 0.3 problem for a third grade fluid in a porous half space, Commun.
1 Nonlinear. Sci. Numer. Simul. 13: 1801-1807.

”J"_ [4] T. Lotfi, K. Mahdiani, Fuzzy Galerkin Method for Solving Fredholm

Integral Equations with Error Analysis, International Journal of

] Industrial Mathematics 3 (2011) 237-249.

02 [5] O. Coulaud, D. Funaro, O. Kavian, Laguerre spectral approximation

1 of elliptic problems in exterior domains, Computer Methods in Applied
D37 Mechanics and Engineering 80 (1990) 451-458.

] [6] D. Funaro, Computational aspects of pseudospectral Laguerre
3 10 15 0 approximations, Applied Numerical Mathematics 6 (1990) 447-457.

z [7] D. Funaro, O. Kavian, Approximation of some diffusion evolution
Figure 1. Graph of numerical approximaqt(ez) by Hermite equations in unbounded domains by Hermite functions, Mathematics of
Computing 57 (1991) 597-619.
[8] B. Y. Guo, Error estimation of Hermite spectral method for nonlinear
partial differential equations, Mathematics of Computing 68 (1999)
1067-1078.
[9] B.Y. Guo, J. Shen, Laguerre-Galerkin method for nonlinear partial
l differential equations on a semi-infinite interval, Numerical Mathematik
0.8 86 (2000) 635-654.

1 [10] Y. Maday, B. Pernaud-Thomas, H. Vandeven, Reappraisal of
0.74 Laguerre type spectral methods, Recherche Aerospatiale, La 6 (1985)
| 13-35.

[11] J. Shen, Stable and efficient spectral methods in unbounded
domains using Laguerre functions, SIAM Journal on Numerical
Analysis 38 (2000) 1113-1133.

0.4 [12] H. I. Siyyam, Laguerre tau methods for solving higher order

1 ordinary differential equations, Journal of Computational Analysis and
5 Applications 3 (2001) 173-182.
| [13] B. Y. Guo, Gegenbauer approximation and its applications to
| differential equations on the whole line, Journal of Mathematical
0.1 Analysis and Applications 226 (1998) 180-206.

1 [14] B. Y. Guo, Gegenbauer approximation and its applications to
T differential equations with rough asymptotic behaviors at infinity,

b 2 1 12 0 Applied Numerical Mathematics 38 (2001) 403—-425.

[15] B. Y. Guo, Jacobi approximations in certain Hilbert spaces and

their applications to singular differential equations, Journal of

Mathematical Analysis and Applications 243 (2000) 373—-408.

[16] B. Y. Guo, Jacobi spectral approximation and its applications to
i differential equations on the half line, Mathematical and Computer

vilL. Conclusions Modelling 18 (2000) 95-112.

; ; ; 17] M. Barkhordari Ahmadi, M. Khezerloo, Fuzzy Bivariate Chebyshev
In this paper, we applled the collocation method to solv ethod for Solving Fuzzy Volterra-Fredholm Integral Equations,

the steady flow of the third grade fluid in a porous half|yernational Joumal of Industrial Mathematics 3 (2011) 67-78.
space. This method is easy to implement and yields th@s] z. Lorkojori, N. Mikaeilvand, Two Modified Jacobi Methods for
desired accuracy. An important concern of collocationM-Matrices, International Journal of Industrial Mathematics 2 (2010)

; ; ; ; :181-187.
approach is the choice of basis functions. The basi 19] J. P. Boyd. Chebyshev and Fourier Spectral Methods, Second

functions have three different properties: easyggiion, Dover, New York, 2000.
computation, rapid convergence and completeness, whicf2o] CI. Christov, A complete orthogonal system of functions in
means that any solution can be represented to arbitrarily?(-«,«) space, SIAM Journal on Applied Mathematics 42 (1982)

high accuracy by taking the truncatioiN to be  1337-1344,

s [21] J. P. Boyd, Orthogonal rational functions on a semi-infinite
suff|C|entIy large' We used two set of Orthoqonal interval, Journal of Computational Physics 70 (1987) 63—88.

functions as the basis function in this method find[22] J. P. Boyd, Spectral methods using rational basis functions on an
compared the results together. Through the comparisonisfinite interval, Journal of Computational Physics 69 (1987) 112—142.

among the numerical solutions [31] and the currentl23] B. Y. Guo, J. Shen, Z. Q. Wang, A rational approximation and its

works, it has been shown that the present works havé?:?ehr(]:filftilcogsorrtl?)utc::]f;e;.%nzﬁ(;og)qljl_?t;gqjﬂon the half line, Journal of

provided acceptable approach for this type equationpgs ;. p. Boyd, C. Rangan, P. H. Bucksbaum, Pseudospectral methods
Although both functions lead to more accurate results, buén a semi-infinite interval with application to the Hydrogen atom: a

it seems that the accuracy and rapidity of Hermitecomparison of the mapped Fourier-sine method with Laguerre series and
function is better than Sinc function in this problem. gggg?ggh?fyshev expansions, Journal of Computational Physics 188
[25] K. Parand, M. Dehghan, A. Taghavi. Modified generalized
Laguerre function Tau method for solving laminar viscous flow: The
Blasius equation, International Journal of Numerical Methods for Heat
and Fluid Flow 20 (2010) 728-743.

=

function

084

Figure 2. Graph of numerical approximatgz) by Sinc function



Int'l Conf. Scientific Computing| CSC'13 | 183

[26] K. Parand, M. Razzaghi, Rational Chebyshev tau method for[33] K. Parand, M. Dehghan, A. R. Rezaeia, S. M. Ghaderia, An
solving Volterra’'s population model, Applied Mathematics and approximation algorithm for the solution of the nonlinear Lane-Emden
Computation 149 (2004) 893-900. type equations arising in astrophysics using Hermite functions
[27] K. Parand, M. Razzaghi, Rational Legendre approximation forcollocation method, Computer Physics Communications 181 (2010)
solving some physica problems on semi-infinite intervals, Physical096—1108.

Scripta 69 (2004) 353-357. [34] J. Shen, T. Tang, High Order Numerical Methods and Algorithms,
[28] K. Parand, M. Shahini, Rational Chebyshev pseudospectralChinese Science Press, to be published in (2005).

approach for solving Thomas-Fermi equation, Physics Letters A 37335] J. Shen, T. Tang, L-L.Wang, Spectral Methods Algorithms,
(2009) 210-213. Analyses and Applications, Springer, First edition, (2010).

[29] K. Parand, M. Shahini, M. Dehghan, Rational Legendre [36] K. Parand, A. Pirkhedri, Sinc-Collocation method for solving
pseudospectral approach for solving nonlinear differential equations ofstrophysics equations, New Astronomy 15 (2010) 533-537.
Lane-Emden type, Journal of Computational Physics 228 (2009) 8830{37] M. Dehghan, A. Saadatmandi, The numerical solution of a
8840. nonlinear system of second-order boundary value problems using the
[30] K. Parand, A. Taghavi, Rational scaled generalized Laguerresinc—collocation method, Mathematical and Computer Modelling 46
function collocation method for solving the Blasius equation, Journal of(2007) 1434-1441.

Computational and Applied Mathematics 233 (2009) 980-989. [38] J. Lund, K. Bowers, Sinc Methods for Quadrature and Differential
[31] F. Ahmad, 2009. A simple analytical solution for the steady flow Equations, SIAM, Philadelphia (1992).

of a third grade fluid in a porous half space, Commun. Nonlinear. Sci[39] M. EI-Gamel, S.H. Behiry, H. Hashish, Applied Mathematics and
Numer. Simul. 14; 2848-2852. Computation 145 (2003) 717.

[32] J. Shen, L-L. Wang, Some Recent Advances on Spectral Methods

for Unbounded Domains, Communications in Computational Physics 5

(2009) 195-241.





