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Abstract: In this paper we provide a collocation method for the problem of flow and diffusion of 
chemically reactive species over a nonlinearly stretching sheet. This approach is based on a modified 
generalized Laguerre that it is an orthogonal function. Collocation method reduces the solution of these 
problems to the solution of systems of algebraic equations. We also compare this work with Homotopy 
Analysis Method (HAM). Moreover, in the graph of the ||Res||2, we show that the present solution is more 
accurate and faster convergence in this problem. 
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INTRODUCTION 
 
 Mass  and  momentum  transport  by  different 
power-law variations with constant, linear or nonlinear 
stretching velocity over continuously stretching 
surfaces has been modeled. Sakiadi [1, 2] worked about 
this problem with constant velocity and Crane [3] 
worked with stretching sheet of linear velocity [4].  
 In addition to the stretching surfaces, the heat and 
mass flow could make an effect on them by thermal 
diffusion, concentration differences, applied external 
forces, chemical reaction and the medium involved in 
many transport processes that exist in nature and 
industrial applications. The transfer of a chemically 
reactive species over a linearly stretching sheet for 
homogeneous first and higher order reactions has been 
investigated by Andersson et al. [5]. Thakar et al. [6] 
worked about this problem with non-zero velocity at the 
wall and applied magnetic field. Raptis and Perdikis [7] 
pursue their researches in this field by considering this 
problem under the influence of magnetic field over a 
nonlinearly (quadratic) stretching sheet. Also, 
Rajagopal et al. [8] had some researches in this field. 
The quality of the final product with desired 
characteristics could be achieved in some metallurgical 
and polymer processing applications by drawing the 
continuous strips or filaments throughout quiescent 
fluid or porous medium. Additionally there are some 
kinds of phenomena such as mass diffusion and mass 
convection that could be observed in fluid mixture that 
saturates a porous solid matrix for the migration of 

moisture through fiberglass wool by Bejan [9]. In 
addition, several researchers expanded the problem of 
mass and momentum transport of chemically reactive 
species on linearly stretching sheet to porous medium 
and non-Newtonian fluids [4, 10-14]. 
 Moreover, spectral methods have been successfully 
applied in the approximation of differential boundary 
value problems defined in unbounded domains. For 
problems  whose  solutions  are  sufficiently  smooth, 
they exhibit exponential rates of convergence/spectral 
accuracy. The first approach is using Laguerre 
polynomials [15-17]. The Burgers equation and 
Benjamin-Bona-Mahony   (BBM)   equation   on   a  
semi-infinite interval are two equation that Guo [15] 
worked about them and suggested a Laguerre-Galerkin 
method for them. It is shown that the Laguerre-Galerkin 
approximations are convergent on a semi-infinite 
interval with spectral accuracy. In [16] proposed 
spectral  methods  using  Laguerre  functions  and 
analyzed for model elliptic equations on regular 
unbounded domains. It is shown that spectral-Galerkin 
approximations based on Laguerre functions are stable 
and convergent with spectral accuracy in the Sobolev 
spaces. Siyyam [17] applied two numerical methods for 
solving initial value problem differential equations 
using the Laguerre Tau method. He generated linear 
systems and solved them. Maday et al. [18] proposed a 
Laguerre type spectral method for solving partial 
differential equations. They introduced a general 
presentation of the method and a description of the 
derivation  discretization  matrices  and then determined 
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the optimum estimations in the adapted Hilbert norms. 
Recently, in [19] it used the modified generalized 
Laguerre. However, modified generalized Laguerre was 
used former. The second approach is reformulating 
original problem in semi-infinite domain to singular 
problem in bounded domain by variable transformation 
and then using the Jacobi polynomials to approximate 
the resulting singular problem [20]. The third approach 
is replacing semi-infinite domain with [0,L] interval by 
choosing L, sufficiently large. This method is named 
domain truncation [21]. The fourth approach of spectral 
method is based on rational orthogonal functions [22]. 
Boyd [23] defined a new spectral basis, named rational 
Chebyshev functions on the semi-infinite interval, by 
mapping to the Chebyshev polynomials. Guo et al. [24] 
introduced a newset of rational Legendre functions 
which ismutually orthogonal in L2(0,+∞). They applied 
a spectral scheme using the rational Legendre functions 
for solving the Korteweg-de Vries equation on the half 
line. Among these, an approach consists in using the 
Pseudospectral method based on the nodes of Gauss 
formulas related to unbounded intervals [25]. 
Collocation method has become increasingly popular 
for solving differential equations also this is very useful 
in providing highly accurate solutions to differential 
equations. Recently, it used [25, 26]. 
 In this paper,we aim to employ the collocation 
method to solving this problem. This paper is arranged 
as follows: In Section 2, we describe the formulation of 
flow and diffusion of chemically reactive species over a 
nonlinearly stretching sheet. In Section 3, we describe 
the formulation of modified generalized Laguerre 
functions. Section 4 summarizes the application of this 
method for solving flow and diffusion of chemically 
reactive species over a nonlinearly stretching sheet. In 
Section 5, we show results and in this section a 
comparison is made with homotopy analysis method. 
The conclusions are described in the final section. 
 

PROBLEM FORMULATION 
 
 Consider the steady two-dimensional 
incompressible   fluid    flow   over   a  nonlinearly 
semi-infinite  stretching  sheet  in  a  porous  medium 
with the presence of a homogeneous first order 
chemical reaction. With the usual boundary-layer 
approximations, the governing equations for the 
momentum and concentration fields [4, 5, 7, 27, 28], 
 

                              u v
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x y
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+
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Table 1: Nomenclature and greek symbols 

Nomenclature  

MGLFM Modified generalized Laguerre formulation method 

HAM Homotopy analysis method 

C Species concentration in the fluid 

Cw Concentration of the reactant at the wall 

D Mass diffusion coefficient 

B0 Strength of the magnetic field 

F Functions related to the velocity field 

G Functions related to the velocity field 

H Species concentrations in the fluid 

S Species concentrations in the fluid 

K Darcy permeability 

Sc Schmidt number 

U Local macroscopic velocity 

V Velocity component in y-direction 

k1 Chemical reaction parameter 

Greek symbols  

υ Kinetic viscosity 

β  Reaction rate parameter 

ρ  Density of the fluid 

η Dimensionless variable 

σ Electrical conductivity 
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where x and y are the coordinates along and 
perpendicular to the sheet, u and v are the components 
of the velocity in the x and y directions, respectively. V 
is the kinematic viscosity, ρ is the fluid density, σ is the 
electrical conductivity, B0 is the strength of the 
magnetic field, C is the species concentration in the 
fluid, D is the mass diffusion coefficient and k1 is the 
chemical reaction parameter [4, 7, 27]. 
 

       2
wu(x,0)=ax cx ,   v(x,0)=0,   C(x,0)=C+

 
(4) 

  
                  u 0,   C 0  as  y→ → → ∞  (5) 
 
where a and c are constants and the subscript w denotes 
condition at the wall. Following Raptis and Perdikis [7], 
we introduce similarity transformations [4, 5, 7, 27, 28], 
 

             2a
= y ,    u = a x f ( ) cx g ( )′ ′η η + η
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(6) 
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 Applying the transformation of variables in Eqs. 
(6)-(9), the governing Eqs. (1)-(5) are transformed to a 
system of dimensionless nonlinear ordinary differential 
equations [4, 7, 27] 
 

                     2f ff (f ) kf = 0′′′ ′′ ′ ′+ − −  (10) 
 
                g fg 3fg 2f g kg = 0′′′ ′′ ′ ′ ′′ ′+ − + −  (11) 
 

                        H scfH H = 0′′ ′+ − β  (12) 
 

               S scfS scgH scfS S = 0′′ ′ ′ ′− + + − β  (13) 
 
Subject to boundary conditions, 
 
                f (0 )=0 ,    f (0 )=1 ,    f ( ) = 0′ ′ ∞  (14) 
 
               g(0)=0,    g(0)=1,    g( ) = 0′ ′ ∞  (15) 
 
                     H(0)=1,   H( ) = 0∞  (16) 
 
                      S(0)=0,   S( ) = 0∞  (17) 
 
where ƒ and g are functions related to the velocity field, 
H and S are the species concentrations in the fluid, k is 
the permeability parameter, sc is the Schmidt number 
and β is the reaction rate parameter. The primes denote 
differentiation with respect to η [4]. 
 Different techniques have been used to obtain 
analytical and numerical solutions for this problem. 
Raptis and Perdikis [7] used the shooting method for 
this problem. Kechil and Hashim [27] obtained 
approximate analytical solution via Adomian 
decomposition method. Recently, in [4, 29] the 
homotopy analysis method was also applied for solving 
the above equation [4]. 
 

MODIFIED GENERALIZED  
LAGUERRE FUNCTIONS 

 
 This section is devoted to the introduction of the 
basic notions and working tools concerning orthogonal 
modified  generalized  Laguerre. It has been widely 
used  for  numerical  solutions of differential equations 

on infinite intervals. nL (x)α  (generalized Laguerre 
polynomial) is the nth eigenfunction of the Sturm-
Liouville problem [25, 30, 31]:  

 

     
2

n n n2
d dx L (x) ( 1 x) L (x) nL (x) 0

dxdx
α α α+ α + − + =  (18) 

                       )x I 0, ,n 0,1,2,....∈ =  ∞ =  

 
 The generalized Laguerre in polynomial manner 
are defined with the following recurrence formula:  
 

                                 0L (x) 1α =  (19) 

1L (x) 1 xα = + α −   
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 These are orthogonal polynomials for the weight 

function xw x eα −
α = . We define Modified generalized 

Laguerre functions (which we denote MGLF) φj as 
follows [25]:  
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 This  system  is  an  orthogonal  basis  [32,  33] 

with  weight  function  
x

w(x)
L

=  and  orthogonality  

property [25]:  
 

                     
L

m n nm2w

(n 2)
, ( )

L n !

Γ +
φ φ = δ  (21) 

 
where δnm is the Kronecker function. 
 
Function approximation with Laguerre functions: A 
function ƒ(x) defined over the interval I = [0,∞) can be 
expanded as  

                              i i
i 0

f(x) a (x)
+∞

=

= φ∑  (22) 

where  
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 If the infinite series in Eq. (22) is truncated with N 
terms, then it can be written as [25]  
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Modified generalized Laguerre functions collocation 
method: Laguerre-Gauss-Radau points and generalized 
Laguerre-Gauss-type interpolation were introduced by 
[25, 34-36]. 
Let  
 
                      2N 1

N span{1,x,...,x }−ℜ =  (27) 
 
we choose the collocation points relative to the zeroes 
of the functions [25]  
 

                  j j j 1
j 1

p ( x ) (x) ( ) (x)
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= φ − φ  (28) 

 

 Let 
x

w(x)
L

=   and xj, j = 0,1,…,N-1, be the N 

MGLF-Radau points. The relation between MGLF 
orthogonal systems and MGLF integrations is as 
follows [25, 37]:  
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j = 0,1,2,…,N-1. In particular, the second term on the 
right-hand side vanishes when ƒ(x) is a polynomial of 
degree at most 2N-1 [25]. We define  
 

                          
N 1

N j j
j 0

I u(x) a (x)
−

=

= φ∑  (30) 

 
it as: N j jI u ( x ) u(x )= , j 0,1,2,...,N 1.= −  INu is the 

orthogonal projection of u upon ℜN with respect to the 
discrete inner product and discrete norm as [25]: 
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thus for the MGLF Gauss-Radau interpolation we have  
 
            N Nw,N w,N

I u,v u,v , u.v= ∀ ∈ ℜ  (33) 

 
SOLVING THE PROBLEM WITH MODIFIED 

GENERALIZED LAGUERRE FUNCTIONS 
 
 To apply modified generalized Laguerre 
collocation method to Eqs. (10)-(13) with boundary 
conditions Eqs. (14)-(17), at first we expand ƒ(η), g(η), 
H(η) and S(η) as follows:  
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−
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 To find the unknown coefficients aj's, bj's, cj's and 
dj's we substitute the truncated series ƒ(η), g(η), H(η) 
and S(η) into Eqs. (10)-(13) and boundary conditions in 
Eqs. (14)-(17). Also, we can construct the residual 
functions   Res1(η),   Res2(η),   Res3(η)  and  Res4(η) 
for   the  four  equations  in  the  governing  system, 
Eqs. (10)-(13) as: 
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 By applying η in Eqs. (38)-(41) with the N 
collocation points which are roots of functions NLα , we 
have 4N equations; also, we have six boundry equations 
Eqs. (42)-(45).Now, all of these equations can be 
solved by Newton method for the unknown 
coefficients. We should mention Eq. (46) is always 
truen in these generated equations; therefore, we do not 
need to apply these boundary conditions. 
 

RESULT AND DISCUSSION 
 
 In this paper, we present the results of our research 
by N = 20, α=1 and L = 0.99 in modified generalized 
Laguerre for solving this problem. Table 2-4 show the 
comparison between numerical method that was 
mentioned in [4], HAM and MGLFM solutions of 
velocity profile -ƒ″(0), -H′(0) and -S′(0) for various k 
when β = 0.2 and sc = 0.24. Table 5 and 6 show the 
comparison between numerical method that was 
mentioned   in   [4],  HAM  and  MGLFM  solutions  of 
-H′(0)  and  -S′(0)  for  various  sc  when  β  =  0.2  and 
k = 0.8. Table 7 and 8 show the comparison between 
numerical method that it was mentioned in [4], HAM 
and MGLFM solutions of -H′(0) and -S′(0) for various 
β when sc = 0.24 and k = 0.8. 
 Figure 1 and 2 illustrate that the destructive 
chemical reaction rate parameter β(β>0) reduces the 
concentration of H(η) and contrarily increases S(η). 
This shows that the diffusion rate can be significantly 
altered by chemical reaction rate. Figure 3 and 4 show 
the  same  effect  where both H(η) and S(η) decrease as 

Table 2: Comparison between MGLFM and other solutions of 
velocity profile -ƒ″(0) for various k at β = 0.2 and sc = 0.24 

with N = 20, α = 1 and L = 0.99 

 HAM [4] Present method Numerical solution [4] 

k -ƒ″(0) -ƒ″(0) -ƒ″(0) 

0.6 1.264934 1.265299 1.264911 

0.8 1.341624 1.342081 1.341640 

1.0 1.414017 1.414686 1.414213 
1.5 1.5802313 1.5816435 1.581139 

 

Table 3:Comparison between MGLFM and other solutions of 
velocity profile -H′(0) for various k at β  = 0.2 and sc = 0.24 

with N = 20, α = 1 and L = 0.99 

 HAM [4] Present method Numerical solution [4] 
k -H′(0) -H′(0) -H′(0) 

0.6 0.505910 0.505903 0.50590 

0.8 0.503601 0.503811 0.50380 

1.0 0.501943 0.501962 0.50191 
1.5 0.498112 0.498129 0.49813 

 

Table 4:Comparison between MGLFM and other solutions of 
velocity profile -S′(0) for various k at β  = 0.2 and sc = 0.24 

with N = 20, α = 1 and L = 0.99 

 HAM [4] Present method Numerical solution [4] 
k -S′(0) -S′(0) -S′(0) 

0.6 0.040063 0.040357 0.04035 

0.8 0.040320 0.040262 0.04022 
1.0 0.040070 0.040070 0.04004 

1.5 0.039380 0.039351 0.03937 

 
Table 5:Comparison between MGLFM and other solutions of 

velocity profile -H′(0) for various sc at β  = 0.2 and k = 0.8 

with N = 20, α = 1 and L = 0.99 

 HAM [4] Present method Numerical solution [4] 
sc -H′(0) -H′(0) -H′(0)  

0.24 0.503601 0.503811 0.50380 

0.4 0.544218 0.544194 0.54429 
0.6 0.596620 0.596549 0.59659 

0.8 0.650062 0.649917 0.65001 

 
Table 6:Comparison between MGLFM and other solutions of 

velocity profile -S′(0) for various sc at β  = 0.2 and k = 0.8 

with N = 20, α = 1 and L = 0.99 

 HAM [4] Present method Numerical solution [4] 

sc -S′(0) -S′(0) -S′(0)  

0.24 0.0403201 0.0402621 0.04022 

0.4 0.0673822 0.0680449 0.06795 
0.6 0.1014366 0.1022135 0.10221 

0.8 0.1338458 0.1346625 0.13469 
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Table 7:Comparison between MGLFM and other solutions of 

velocity profile -H′(0) for various β  at β  = 0.8 and sc = 0.24 

with N = 20, α = 1 and L = 0.99 

 HAM [4] Present method Numerical solution [4] 

β  -H′(0) -H′(0) -H′(0) 

0.2 0.503601 0.503811 0.50380 

0.8 0.933541 0.933529 0.93358 

1.0 1.036527 1.036521 1.03652 

1.2 1.129936 1.129923 1.12992 

 
Table 8:Comparison between MGLFM and other solut ions of 

velocity profile -S′(0) for various β  at β  = 0.8 and sc = 0.24 

with N = 20, α = 1 and L = 0.99 

 HAM [4] Present method Numerical solution [4] 

β  -S′(0) -S′(0) -S′(0) 

0.2 0.040320 0.040262 0.040220 

0.8 0.030445 0.030681 0.030667 

1.0 0.028971 0.029130 0.029101 
1.2 0.027672 0.027872 0.027822 

 

 
Fig. 1: Concentration profile H(η) for various β when 

k = 0.8  and  sc = 0.24  with  N = 20, α = 1 and 
L = 0.99 

 
the Schmidt number sc increases. This is due to the 
contribution of mass diffusion which becomes less 
significant as the Schmidt number that represents the 
ratio of momentum and mass diffusivity increases. 
 Also, as shown in Figure 5 and 6 for the effects of 
magnetic parameter, the consumption of the low 
concentration H(η) and S(η)continues and reaches its 
peak  minimum  almost  at  the  same  distance of η 
from  the  wall before it oscillates back to zero. Figure 7  

 

 
 
Fig. 2: Concentration  profile  S(η) for various β when 

k  =  0.8  and  sc = 0.24 with N = 20, α = 1 and 
L = 0.99 

 

 
 
Fig. 3: Concentration profile H(η) for various sc when 

k  =  0.8  and  β = 0.2  with  N = 20, α = 1 and 
L = 0.99 

 
illustrates the influence of the magnetic parameter k on 
the velocity profile g′(η). It shows that the parameter k 
have the few effect on the velocity profile. 
 Figure 8 illustrates the influence of the magnetic 
parameter k on the velocity profile ƒ′(η). In Fig. 8, we 
can observe an almost precise alignment between 
MGLFM and  the  exact  solutions. Furthermore, Fig. 8  
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Fig. 4: Concentration profile S(η) for various sc when 

k =  0.8  and  sc  =  0.2 with N = 20, α = 1 and 
L = 0.99 

 

 
Fig. 5: Concentration profile H(η) for various k when 

sc = 0.24  and  sc = 0.2 with N = 20, α = 1 and 
L = 0.99 

 

 
Fig. 6: Concentration profile S (η) for various k when  

sc  =  0.24  and  β = 0.2 with N = 20, α = 1 and 
L = 0.99 

 

 
Fig. 7: Velocity   profile   g′(η)  for  various  k  when  

sc  =  0.24  and  β = 0.2 with N = 20, α = 1 and 
L = 0.99 

 

 
Fig. 8: Velocity profile ƒ′ (η) for various k and 

comparison with exact solutions when sc = 0.24 
and β = 0.2 with N = 20, α = 1 and L = 0.99 

 

 
Fig. 9: Graph  of  ||Res||2  by  MGLFMs  solution  for  

β = 0.8, k = 0.8 and sc = 0.24 
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Fig. 10: Graph  of  ||Res||2  by  MGLFMs  solution   for  

β = 0.2, k = 0.8 and sc = 0.4 
 

 
 
Fig. 11: Graph  of  ||Res||2  by  MGLFMs  solution  for  

β = 0.2, k = 0.6 and sc = 0.24 
 
shows that the increment in the magnetic parameter 
reduces the velocity profile ƒ′(η). Here we note that the 
Eq.(10) subject to boundary conditions Eq.(14) has an 
exact solution [10] as 
 

                      1 k1
f ( ) (1 e )

1 k
− + ηη = −

+
 (47) 

 
while in the absence of the magnetic field where k = 0, 
the exact solution first obtained by Crane [3] is  
 
                                  f ( ) 1 e−ηη = −  (48) 

 

 
 
Fig. 12: Graph  of  Error  by   MGLFMs   solution   for  

β = 0.2, k = 0.6 and sc = 0.24 
 
 The logarithmic graphs of the ||Res||2 for MGLFM 
at (β = 0.8, k = 0.8 and sc = 0.24), (β = 0.2, k = 0.8 and 
sc = 0.4) and (β = 0.2, k = 0.6 and sc = 0.24) are shown 
in Fig. 9-11, respectively. These graphs illustrate the 
convergence rate of the method. 
 The absolute error between MGLFMs solution and 
exact  solution  of  the  velocity profile ƒ(η) for β = 0.2, 
k = 0.8 and sc = 0.24 is shown in Fig. 12. 
 

CONCLUSION 
 
 In this study, flow and diffusion of chemically 
reactive species over a nonlinearly stretching sheet was 
investigated numerically using MGLFM. Modified 
generalized Laguerre functions are orthogonal functions 
that solved the system of non-linear differential 
equations governing the problem on the semi-infinite 
domain without truncating it to a finite domain, 
imposing the asymptotic condition transforming and 
transforming the domain of the problem. Modified 
generalized Laguerre functions were proposed to 
provide a simple way to improve the convergence of 
the solution by collocation method. The graphs of the 
||Res||2 demonstrated the fact that the present solution 
using MGLFM was highly accurate. 
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