

Dr. Marina Blanton and Dr. Mehrdad Aliasgari mainly contributed to this research. This work was supported in part by grants CNS-1223699 from the National Science Foundation and FA9550-13-1-0066 from the Air Force Office of Scientific Research.

Secure Computation on Hidden Markov Models Fattaneh Bayatbabolghani Department of Computer Science and Engineering, University of Notre Dame

HMM algorithm

 β_{jk} as in following equation: $\beta_{jk} = \sum_{i=1}^{\alpha} \omega_i \, e^{-\frac{1}{2}(X_k - \mu_i)^T \sum_i^{-1}(X_k - \mu_i)}$ 2- Set $\lambda = \langle N, T, \pi, A, \beta \rangle$; 3- Execute $\langle P^*, q^* \rangle = Viterbi(\lambda);$ 4- Return $\langle P^*, q^* \rangle$. $\square P^*$ is the probability of the most likely path for a given sequences of observation. $\Box q^* = \langle q_1^*, \dots, q_T^* \rangle$ denotes the most likely path. And *Viterbi* algorithm is: $\langle P^*, q^* \rangle = Viterbi(\lambda)$ 1- Initialization step: for i = 1 to N do • $\delta_1(i) = \pi_i \beta_{i1}$ • $\psi_1(i) = 0$ 2- Recursion step: for k = 2 to T and j = 1 to N do • $\delta_k(j) = (\max_{1 \le i \le N} [\delta_{k-1}(i)a_{ij}])\beta_{jk}$ • $\psi_k(j) = \arg \max_{1 \le i \le N} [\delta_{k-1}(i)a_{ij}]$ 3- Termination step: • $P^* = \max_{1 \le i \le N} [\delta_T(i)]$ • $q_T^* = \arg \max_{1 \le i \le N} [\delta_T(i)]$ • For k = T - 1 to 1 do $q_k^* = \psi_{k+1}(q_{k+1}^*)$ 4- Return $\langle P^*, q^* \rangle$ Floating point operations Two floating point operations are used: Comparison(FLLT) Multiplication(FLMul) Each floating point operation consists of some integer operations that are computed by Server and Client.

Floating point operations

Comparison(LT) of two encrypted integer numbers enc(x) and enc(y)

Server:

1- Select $b_1 \in \{0, 1\}, r_1, r'_1 \in \{0, 1\}^*, r_1 > r'_1$. **2-** compute enc(c) = enc(x - y), **3-** compute $a_1 = enc(1 - b_1)$, $a_2 =$ enc $(b_1), a_3 = enc(-1^{b_1}cr_1 + (-1)^{1-b_1}r'_1),$ and send to Client.

Client:

4- Select $b_2 \in \{0, 1\}$, $r_2, r'_2 \in \{0, 1\}^*, r_2 > r'_2.$ 5- compute $a'_1 = a_{1+b_2}enc(0), a'_2 =$ $a_{2-b_2}enc(0), a'_3 = enc(-1^{b_2}a_3r_2 +$ $(-1)^{1-b_2}r'_2$), and send to Server.

Server & Client:

6- Compute $dec(a'_3)$. If it is negative, output is a'_2 , otherwise, output is a'_1 .

Multiplication(Mul) of two encrypted integer numbers enc(x) and enc(y):

Server:

1- Choose a random number r. **2-** Compute enc(x - r), and send to Client.

Server & Client:

3- Compute dec(x - r).

Client:

4- compute enc(y(x - r)), and sent to Server.

Server: **4-** Compute ecn(yr), and send to Client:

Server & Client:

5- Compute enc(xy).

Results

□ Implementation of HMM for two-party setting.

Conclusion

□ Privacy-preserving techniques are used for HMM computation in two-party setting. The overhead of communications and computations are minimized.