
Secure Computations of Trigonometric and Inverse Trigonometric Functions 
Fattaneh Bayatbabolghani1, Marina Blanton2, Mehrdad Aliasgari3, and Michael Goodrich4

1Computer Science and Engineering, University of Notre Dame
2Computer Science and Engineering, University at Buffalo (SUNY)

3Computer Engineering and Computer Science, California State University, Long Beach
4Computer Science, University of California, Irvine

Motivation
q There is a need to compute trigonometric and

inverse trigonometric functions on private
data in a number of applications such as
secure fingerprint recognition.

Goals
q To develop new and efficient secure protocols

for trigonometric and inverse trigonometric
functions such as the sine and the arctangent
functions.

q To develop secure protocols in both the two-
party and multi-party computational settings in
the semi-honest adversarial model.

Type	equation	here.

This work was supported in part by grants 1223699, 1228639,1319090, and 1526631 from the National Science Foundation and FA9550-13-1-0066 from the Air Force Office of Scientific Research, as well
as DARPA agreement no. AFRL FA8750-15-2-0092.

Secure Protocols
q We build our solutions based on garbled

circuit evaluation techniques for the two-party
setting and linear secret sharing techniques
for the multi-party setting.

q Our solutions use for fixed-point arithmetic
which are represented using 𝑙	bits, 𝑘 of which
are stored after the radix point.

Sine Protocol
q We use 𝑥𝑃(𝑥5) to approximate sine function for

some polynomial 𝑃 over variable 𝑥.

Input: 𝑎	
Output: Sin(𝑎)
Computation:
1. Apply a range reduction on 𝑎 to compute 𝑥 where

0 ≤ 𝑥 ≤ 1	and keep range reduction information
2. Compute 𝑤 =	𝑥5
3. Lookup the minimum polynomial degree 𝑁 which

precision of approximation is at least 𝑘′ bits
4. Lookup polynomial coefficients 𝑝A,… , 𝑝D for sine

approximation
5. Compute 𝑧F,… , 𝑧D ← 𝑃𝑟𝑒𝑀𝑢𝑙 𝑤,𝑁
6. Set 𝑦 =	 𝑝A + ∑ 𝑝O𝑧OD

OPF
7. Set the output as 𝑥𝑦 and adjust it based on the

range reduction information in step 1.

Complexity in Two-Party Setting:
XOR Gates: 𝑂(𝑁𝑙5)
Non-XOR Gates: 𝑂(𝑁𝑙5)

Complexity in Multi-Party Setting:
Rounds: 𝑂(log𝑁)
Interactive Operations : 𝑂(𝑁𝑘 + 𝑙)

Type	equation	here.

Arctangent Protocol
q We use ℎD(𝑥) to approximate arctangent function

for some polynomial ℎ of degree 𝑁 over variable
𝑥.

Input: 𝑎	
Output: Arctan(𝑎)
Computation:
1. Apply a range reduction on 𝑎 to compute 𝑥 where

0 ≤ 𝑥 ≤ 1 and keep range reduction information
2. Lookup the minimum polynomial degree 𝑁 which

precision of approximation is at least 𝑘′ bits
3. Lookup polynomial coefficients 𝑝A,… , 𝑝D for

arctangent approximation
4. Compute 𝑧F,… , 𝑧D ← 𝑃𝑟𝑒𝑀𝑢𝑙 𝑥, 𝑁
5. Set 𝑦 =	 𝑝A + ∑ 𝑝O𝑧OD

OPF
6. Set the output as 𝑦 and adjust it based on the

range reduction information in step 1.

Complexity in Two-Party Setting:
XOR Gates: 𝑂(𝑁𝑙5)
Non-XOR Gates: 𝑂(𝑁𝑙5)

Complexity in Multi-Party Setting:
Rounds: 𝑂(log𝑁 + log 𝑙)
Interactive Operations: 𝑂(𝑁𝑘 + 𝑙 log 𝑙)


