Secure Computations of Trigonometric and Inverse Trigonometric Functions

Fattaneh Bayatbabolghani1, Marina Blanton², Mehrdad Aliasgari3, and Michael Goodrich ${ }^{4}$
${ }^{1}$ Computer Science and Engineering, University of Notre Dame
${ }^{2}$ Computer Science and Engineering, University at Buffalo (SUNY)
${ }^{3}$ Computer Engineering and Computer Science, California State University, Long Beach
${ }^{4}$ Computer Science, University of California, Irvine

Motivation

There is a need to compute trigonometric and inverse trigonometric functions on private data in a number of applications such as secure fingerprint recognition.

Goals

\square To develop new and efficient secure protocols for trigonometric and inverse trigonometric functions such as the sine and the arctangent functions.
To develop secure protocols in both the twoparty and multi-party computational settings in the semi-honest adversarial model.

Secure Protocols

\square We build our solutions based on garbled circuit evaluation techniques for the two-party setting and linear secret sharing techniques for the multi-party setting.
\square Our solutions use for fixed-point arithmetic which are represented using l bits, k of which are stored after the radix point.

Sine Protocol

We use $x P\left(x^{2}\right)$ to approximate sine function for some polynomial P over variable x.

Input: a
Output: $\operatorname{Sin}(a)$
Computation:

1. Apply a range reduction on a to compute x where $0 \leq x \leq 1$ and keep range reduction information
2. Compute $w=x^{2}$
3. Lookup the minimum polynomial degree N which precision of approximation is at least k^{\prime} bits
4. Lookup polynomial coefficients p_{0}, \ldots, p_{N} for sine approximation
5. Compute $\left(z_{1}, \ldots, z_{N}\right) \leftarrow \operatorname{PreMul}(w, N)$
6. Set $y=p_{0}+\sum_{i=1}^{N} p_{i} z_{i}$
7. Set the output as $x y$ and adjust it based on the range reduction information in step 1.

Complexity in Two-Party Setting:
XOR Gates: $O\left(N l^{2}\right)$
Non-XOR Gates: $O\left(N l^{2}\right)$
Complexity in Multi-Party Setting:
Rounds: $O(\log N)$
Interactive Operations: $O(N k+l)$

Arctangent Protocol

We use $h_{N}(x)$ to approximate arctangent function for some polynomial h of degree N over variable x.

Input: a

Output: $\operatorname{Arctan}(a)$

Computation:

1. Apply a range reduction on a to compute x where $0 \leq x \leq 1$ and keep range reduction information
2. Lookup the minimum polynomial degree N which precision of approximation is at least k^{\prime} bits
3. Lookup polynomial coefficients p_{0}, \ldots, p_{N} for arctangent approximation
4. Compute $\left(z_{1}, \ldots, z_{N}\right) \leftarrow \operatorname{PreMul}(x, N)$
5. Set $y=p_{0}+\sum_{i=1}^{N} p_{i} z_{i}$
6. Set the output as y and adjust it based on the range reduction information in step 1.
Complexity in Two-Party Setting:
XOR Gates: $O\left(N l^{2}\right)$
Non-XOR Gates: $O\left(N l^{2}\right)$
Complexity in Multi-Party Setting:
Rounds: $O(\log N+\log l)$
Interactive Operations: $O(N k+l \log l)$
[^0]
[^0]: This work was supported in part by grants 1223699, 1228639,1319090, and 1526631 from the National Science Foundation and FA9550-13-1-0066 from the Air Force Office of Scientific Research, as well as DARPA agreement no. AFRL FA8750-15-2-0092.

