Secure Computations of Trigonometric and Inverse Trigonometric Functions

Fattaneh Bayatbabolghani¹, Marina Blanton², Mehrdad Aliasgari³, and Michael Goodrich⁴

¹Computer Science and Engineering, University of Notre Dame ²Computer Science and Engineering, University at Buffalo (SUNY) ³Computer Engineering and Computer Science, California State University, Long Beach ⁴Computer Science, University of California, Irvine

Motivation

□ There is a need to compute trigonometric and inverse trigonometric functions on private data in a number of applications such as secure fingerprint recognition.

Goals

- To develop new and efficient secure protocols for trigonometric and inverse trigonometric functions such as the sine and the arctangent functions.
- □ To develop secure protocols in both the twoparty and multi-party computational settings in the semi-honest adversarial model.

Secure Protocols

- We build our solutions based on garbled circuit evaluation techniques for the two-party setting and linear secret sharing techniques for the multi-party setting.
- Our solutions use for fixed-point arithmetic which are represented using *l* bits, *k* of which are stored after the radix point.

3. 4.

5.

as DARPA agreement no. AFRL FA8750-15-2-0092.

Sine Protocol

 \Box We use $xP(x^2)$ to approximate sine function for some polynomial P over variable x.

Input: a

Output: Sin(a)

Computation:

1. Apply a range reduction on a to compute x where $0 \le x \le 1$ and keep range reduction information 2. Compute $w = x^2$

- Lookup the minimum polynomial degree N which precision of approximation is at least k' bits
- Lookup polynomial coefficients p_0, \dots, p_N for sine approximation

Compute
$$(z_1, ..., z_N) \leftarrow PreMul(w, N)$$

- 6. Set $y = p_0 + \sum_{i=1}^{N} p_i z_i$
- 7. Set the output as xy and adjust it based on the range reduction information in step 1.

Complexity in Two-Party Setting:

XOR Gates: $O(Nl^2)$ Non-XOR Gates: $O(Nl^2)$

Complexity in Multi-Party Setting:

Rounds: $O(\log N)$ Interactive Operations : O(Nk + l)

Input: a **Output:** Arctan(*a*) **Computation:**

2.

3.

4.

5. 3 6.

Complexity in Two-Party Setting: XOR Gates: $O(Nl^2)$ Non-XOR Gates: $O(Nl^2)$

Arctangent Protocol

 \Box We use $h_N(x)$ to approximate arctangent function for some polynomial h of degree N over variable χ .

1. Apply a range reduction on *a* to compute *x* where $0 \le x \le 1$ and keep range reduction information Lookup the minimum polynomial degree N which precision of approximation is at least k' bits Lookup polynomial coefficients p_0, \dots, p_N for arctangent approximation

Compute
$$(z_1, ..., z_N) \leftarrow PreMul(x, N)$$

Set
$$y = p_0 + \sum_{i=1}^N p_i z_i$$

Set the output as y and adjust it based on the range reduction information in step 1.

Complexity in Multi-Party Setting:

Rounds: $O(\log N + \log l)$ Interactive Operations: $O(Nk + l \log l)$