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Motivation
q There is a need to compute trigonometric and

inverse trigonometric functions on private
data in a number of applications such as
secure fingerprint recognition.

Goals
q To develop new and efficient secure protocols

for trigonometric and inverse trigonometric
functions such as the sine and the arctangent
functions.

q To develop secure protocols in both the two-
party and multi-party computational settings in
the semi-honest adversarial model.
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Secure Protocols
q We build our solutions based on garbled

circuit evaluation techniques for the two-party
setting and linear secret sharing techniques
for the multi-party setting.

q Our solutions use for fixed-point arithmetic
which are represented using 𝑙	bits, 𝑘 of which
are stored after the radix point.

Sine Protocol
q We use 𝑥𝑃(𝑥5) to approximate sine function for

some polynomial 𝑃 over variable 𝑥.

Input: 𝑎	
Output: Sin(𝑎)
Computation:
1. Apply a range reduction on 𝑎 to compute 𝑥 where

0 ≤ 𝑥 ≤ 1	and keep range reduction information
2. Compute 𝑤 =	𝑥5
3. Lookup the minimum polynomial degree 𝑁 which

precision of approximation is at least 𝑘′ bits
4. Lookup polynomial coefficients 𝑝A,… , 𝑝D for sine

approximation
5. Compute 𝑧F,… , 𝑧D ← 𝑃𝑟𝑒𝑀𝑢𝑙 𝑤,𝑁
6. Set 𝑦 =	 𝑝A + ∑ 𝑝O𝑧OD

OPF
7. Set the output as 𝑥𝑦 and adjust it based on the

range reduction information in step 1.

Complexity in Two-Party Setting:
XOR Gates: 𝑂(𝑁𝑙5)
Non-XOR Gates: 𝑂(𝑁𝑙5)

Complexity in Multi-Party Setting:
Rounds: 𝑂(log𝑁)
Interactive Operations : 𝑂(𝑁𝑘 + 𝑙)
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Arctangent Protocol
q We use ℎD(𝑥) to approximate arctangent function

for some polynomial ℎ of degree 𝑁 over variable
𝑥.

Input: 𝑎	
Output: Arctan(𝑎)
Computation:
1. Apply a range reduction on 𝑎 to compute 𝑥 where

0 ≤ 𝑥 ≤ 1 and keep range reduction information
2. Lookup the minimum polynomial degree 𝑁 which

precision of approximation is at least 𝑘′ bits
3. Lookup polynomial coefficients 𝑝A,… , 𝑝D for

arctangent approximation
4. Compute 𝑧F,… , 𝑧D ← 𝑃𝑟𝑒𝑀𝑢𝑙 𝑥, 𝑁
5. Set 𝑦 =	 𝑝A + ∑ 𝑝O𝑧OD

OPF
6. Set the output as 𝑦 and adjust it based on the

range reduction information in step 1.

Complexity in Two-Party Setting:
XOR Gates: 𝑂(𝑁𝑙5)
Non-XOR Gates: 𝑂(𝑁𝑙5)

Complexity in Multi-Party Setting:
Rounds: 𝑂(log𝑁 + log 𝑙)
Interactive Operations: 𝑂(𝑁𝑘 + 𝑙 log 𝑙)


