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Abstract Hidden Markov model (HMM) is a popular sta-
tistical tool with a large number of applications in pattern
recognition. In some of these applications, such as speaker
recognition, the computation involves personal data that can
identify individuals and must be protected. We thus treat
the problem of designing privacy-preserving techniques for
HMM and companion Gaussian mixture model computation
suitable for use in speaker recognition and other applica-
tions. We provide secure solutions for both two-party and
multi-party computation models and both semi-honest and
malicious settings. In the two-party setting, the server does
not have access in the clear to either the user-based HMM
or user input (i.e., current observations) and thus the compu-
tation is based on threshold homomorphic encryption, while
the multi-party setting uses threshold linear secret sharing as
the underlying data protection mechanism. All solutions use
floating-point arithmetic, which allows us to achieve high
accuracy and provable security guarantees, while maintain-
ing reasonable performance. A substantial part of this work
is dedicated to building secure protocols for floating-point
operations in the two-party setting, which are of indepen-
dent interest.
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1 Introduction

1.1 Motivation

Hidden Markov models (HMMs) have been an invaluable
and widely used tool in the area of pattern recognition. They
have applications in bioinformatics, credit card fraud detec-
tion, intrusion detection, communication networks, machine
translation, cryptanalysis, robotics, andmany other areas. An
HMM is a powerful statistical tool for modeling sequences
that can be characterized by an underlying Markov process
with unobserved (or hidden) states, but visible outcomes.
One important application of HMMs is voice recognition,
which includes both speech and speaker recognition. For
both, HMMs are the most common and accurate approach,
and we use this application as a running example that guides
the computation and security model for this work.

When anHMM is used for the purpose of speaker recogni-
tion, usually one party supplies a voice sample and the other
party holds a description of an HMM that represents how
a particular individual speaks and processes the voice sam-
ple using its model and the corresponding HMM algorithms.
Security issues arise in this context because one’s voice sam-
ple and HMMs are valuable personal information that must
be protected. In particular, a server that stores hiddenMarkov
models for users is in possession of sensitive biometric data,
which, once leaked to insiders or outsiders, can be used to
impersonate the users. For that reason, it is desirable to min-
imize exposure of voice samples and HMMs corresponding
to individuals when such data are being used for authentica-
tion or other purposes. To this end, in this work we design
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solutions for securely performing computation on HMMs in
such a way that no information about private data is revealed
as a result of execution other than the agreed upon output.
This immediately implies privacy-preserving techniques for
speaker recognition as well as other applications of HMMs.

In more detail, in the speaker recognition application the
overall process consists of two phases: (i) feature extraction
in the form of creating an HMM and (ii) speaker authen-
tication in the form of evaluating an HMM. The same two
phases would need to be executed in other applications as
well. Feature extraction constitutes a one-time enrollment
process, during which information about how user U speaks
is extracted and privately stored at a server or servers that will
later authenticate the user (i.e., the HMM is not available to
the servers in the clear and prevents leakage of user informa-
tion and consequently user impersonation by unauthorized
parties). At the time of user authentication, an individual U ′
wanting to gain access to the system as user U engages in
privacy-preserving user authentication by evaluating a voice
sample that U ′ supplies on U’s HMM that the server stores.
This takes the formof a secure protocol run between the client
U ′ and the server. Note that user authentication can never be
performed locally by the client because U ′ can always return
the desired value as the final outcome to the server.

1.2 Our contributions

There are three different types of problems and corre-
sponding algorithms for HMM computation: the forward
algorithm, the Viterbi algorithm, and the expectation max-
imization (EM) algorithm. Because the Viterbi algorithm
is most commonly used in voice recognition, we provide
a privacy-preserving solution for that algorithm, but the
techniques can be used to securely execute other HMM algo-
rithms as well. Furthermore, to ensure that Gaussian mixture
models (GMMs), which are commonly used in HMM com-
putation, can be part of secure computation as well, we
integrate GMM computation in our privacy-preserving solu-
tions.

One significant difference between our and prior work
on secure HMM computation is that we develop techniques
for computation on floating-point numbers, which provide
adequate precision and are most appropriate for HMM com-
putation. We also do not compromise on security, and all of
the techniqueswedevelop are provably secure under standard
and rigorous security models, while at the same time provid-
ing reasonable performance (we implement the techniques
and experimentally show performance in the semi-honest
setting).

To cover aswide of a range of application scenarios as pos-
sible, we consider multiple settings: (i) the two-party setting
inwhich a client interactswith a server and (ii) themulti-party
setting in which the computation is carried out by n > 2

parties, which is suitable for collaborative computation by
several participants as well as secure outsourcing of HMM
computation to multiple servers by one or more computa-
tionally limited clients. In the two-party setting, the server
should have no access in the clear to either the user-based
(private) HMM or user input (i.e., current observations) and
thus the server stores the encrypted HMM and computation
proceeds on encrypted data (see Sect. 4.1 for justification
of this setup). In the multi-party setting, on the other hand,
threshold linear secret sharing is employed as the underlying
mechanism for privacy-preserving computation.

We provide techniques for both semi-honest (also known
as honest-but-curious or passive) and malicious (also known
as active) security models using secure floating-point oper-
ations from [2]. Because [2] treats only the semi-honest
setting, equivalent solution secure in the stronger mali-
cious model are not available for the two-party case. We
thus develop necessary protocols to support general secure
floating-point operations in the two-party computation set-
ting based on homomorphic encryption. These protocols
have applicability well beyond the HMM domain treated in
this work. Their rigorous simulation-based proofs of secu-
rity are the most challenging part of this work and its distinct
and substantial contribution. Note that such proofs were not
provided for the equivalent building blocks secure in the
semi-honest setting and had to be constructed from scratch.

To summarize, our contributions consist of developing
provably secure HMM and GMM computation techniques
based on Viterbi algorithm using floating-point arithmetic.
Our techniques are suitable for two-party and multi-party
computation in a variety of settings and are designed with
their efficiency in mind, which we evaluate through exper-
imental results of an implementation. A significant part of
this work is dedicated to secure floating-point operations
in the malicious model in the two-party setting to support
HMMcomputation (and a large number of other applications
that use floating-point arithmetic) in the malicious model.
We rigorously prove security of the floating-point operations
using simulation-based proofs, and these protocols should be
treated as a major contribution of this work.

Preliminary version of this work appeared in [1]. Some
aspects of [1] (such as description of integer building blocks)
and some results from [1] (such as improved floating-point
product computation) are omitted from this article because of
space considerations. Most of the content of this publication,
on the other hand, is new and has not appeared in [1].

1.3 Paper organization

The rest of this work is organized as follows: We first review
related literature in Sect. 2 and provide background informa-
tion regarding HMMs and GMMs in Sect. 3. In Sect. 4, we
describe our framework covering both two-party and multi-
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party settings and the security model. We then present the
building blocks in Sect. 5 and describe our overall solution
in the semi-honest model in Sect. 6. Section 7 reports on the
results of our implementation, and in Sect. 8 we present new
techniques to enable secure execution of our solution in the
malicious setting. Lastly, Sect. 9 concludes this work.

2 Related work

To the best of our knowledge, privacy-preserving HMM
computation was first considered in [40], which provides
a secure two-party solution for speech recognition using
homomorphic encryption and integer representation of val-
ues. In general, integer representation is not sufficient for
HMMcomputation because it involves various operations on
probability values, which occupy a large range of real num-
bers and demand high precision. In particular, probabilities
need to be repeatedly multiplied during HMM computa-
tion, and the resulting product can quickly diminish with
each multiplication, leading to inability to maintain preci-
sion using integer or fixed-point representation. Smaragdis
and Shashanka [40] compute this product using logarithms of
the values, which becomes the sum of logarithms (called log-
sum in [40]). This allows the solution to retain some precision
even with (scaled) integer representation, but the computa-
tion was nevertheless not shown to be computationally stable
and the error was not quantified. Also, as was mentioned in
[17], one of the building blocks in [40] is not secure.

The techniques of [40] were later used as is in [39] for
Gaussianmixturemodels. The same ideawas used in [30,33]
to develop privacy-preserving speaker verification for joint
two-party computation, where the HMM parameters were
stored in an encrypted domain. Also, [32] treats speaker
authentication and identification and speech recognition in
the same setting. Similar to [31,39] aimed at providing secure
two-partyGMMcomputation using the same high-level idea,
but with implementation differences. The solution of [31],
however, has security weaknesses. In particular, the proto-
col reveals a non-trivial amount of information about the
private inputs, which, in combination with other computa-
tion or outside knowledge, may allow for full recovery of the
inputs (we provide additional detail about this security weak-
ness in [1]). Some of the above techniques were also used in
privacy-preserving network analysis and anomaly detection
in two-party or multi-party computation [26,27].

Another work [35] builds a privacy-preserving protocol
for HMM computation in the two-party setting using a third-
party commodity server to aid the computation. In [35], one
participant owns the model and the other holds observations.
We build a more general solution that can be applied to both
two-party (without an additional server) and multi-party set-
tings, uses high-precision floating-point arithmetic, and is

secure in a stronger security setting (in the presence of mali-
cious participants).

All of the above work uses integer-based representations,
where inmany casesmultiplicationswere replacedwith addi-
tions of logarithms, as originated in [40]. With the exception
of [32], these publications did not quantify the error, while
using integer (or fixed-point) representation demands sub-
stantially larger bit length representation than could be used
otherwise and the error can accumulate and introduce fatal
inaccuracies. Pathak et al. [32] evaluated the error and report
that it amounted to 0.52% for their specific set of parameters.

The need to use non-integer representation forHMMcom-
putation was recognized in [18] and the authors proposed
solutions for secure HMM forward algorithm computation
in the two-party setting using logarithmic representation of
real numbers. The solution that uses logarithmic representa-
tion was shown to be accurate for HMM computation used
in bioinformatics (see [17]), but it still has its limitations.
In particular, the look-up tables used in [18] to implement
certain operations in logarithmic representations grow expo-
nentially in the bitlength of the operands. This means that the
approach might not be suitable for some HMM applications
or a set of parameters. The use of floating-point numbers,
on the other hand, allows one to avoid the difficulties men-
tioned above and provides a universal solution that works
for any application with a bounded (and controlled) error.
Thus, in this work we address the need to develop secure
computation techniques for HMMs on standard real number
representations and provide the first provably secure floating-
point solution for HMMalgorithms, which initially appeared
in [1].

As mentioned earlier, a substantial new component of
this work deals with secure floating-point arithmetic in the
malicious model. We are not aware of any work that pro-
vides techniques for floating-point operations in the security
model with fully malicious participants. We show that such
solutions can be built in the multi-party case using existing
techniques, while in the two-party setting they require new
tools which we put forward in this work.

3 Hidden Markov models and Gaussian mixture
models

A HMM is a statistical model that follows the Markov prop-
erty (where the transition at each step depends only on the
previous transition) with hidden states, but visible outcomes.
The inputs are a sequence of observations, and for each
sequence of observations (or outcomes), the computation
consists of determining a path of state transitions which is
the likeliest among all paths that could produce the given
observations. More formally, an HMM consists of:
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Fig. 1 An example of a hidden Markov model with si ’s representing
states and mi ’s representing outcomes

– N states S1, . . . , SN ;
– M possible outcomes m1, . . . ,mM ;
– a vector π = 〈π1, . . ., πN 〉 that contains the initial state

probability distribution, i.e., πi = Pr[q1 = Si ], where q
is a random variable over the set of states indexed by the
transition number;

– a matrix A of size N × N that contains state transition
probabilities, i.e., a cell ai j of A at row i and column j
contains the probability of the transition from state Si to
state S jai j = Pr[qk+1 = S j |qk = Si ];

– a matrix B of size N × M that contains output prob-
abilities, i.e., a cell bi j of B at row i and column j
contains the probability of state Si outputting outcome
m jbi j = Pr[qk = Si |Xk = m j ].

In the above, observations X1, . . . , XT form HMM’s input,
to which we collectively refer as X . The above parameters
define anHMM. In our running application of speaker recog-
nition, an HMM is a model that represents how a particular
person speaks and an input corresponds to the captured voice
sample of a client. Figure 1 shows an example of an HMM.

In most cases, matrix B is computed based on observa-
tions. Usually this is done by evaluation of the observed value
on probability distributions of states’ outcomes. Then based
on the observations, certain elements of B are used to form a
N × T matrix. For clarity of exposition, we refer to the ele-
ments of B chosen based on, or computed from, the current
observations as N × T matrix β.

One very commondistributionmodel used to computeβ is
a GMM. GMMs are mixtures of Gaussian distributions that
represent the overall distribution of observations. Namely,
an observation is evaluated on a number of Gaussian dis-
tributions with different parameters and the evaluations are
combined together to produce the final probability of a ran-
domvariable acquiring that particular observation. In the case
of HMMs, we use a GMM to compute the output probability
of state S j producing an observation at time k as follows:

β jk =
α∑

i=1

wie
− 1

2 (Xk−μi )
T Σ−1

i (Xk−μi ) (1)

In the above, Xk is a vector of size f that represents the ran-
dom variable corresponding to the observation at time k. In
voice applications, Xk usually contains the Mel-frequency
cepstra coefficients (MFCCs). The parameter α is the total
number of mixture components (here, Gaussian distribu-
tions). The i th component has a mean vector μi of size f
and a covariance matrix Σi of size f × f . The components
are added together, each weighted by a mixture weight wi ,
to produce the probability distribution of state S j when the
observed random variable is Xk . We use notation μ,Σ , and
w to refer to the sequence ofμi ,Σi , andwi , respectively, for
i = 1, . . . , α.

There are three different types of problems and respective
dynamic programming algorithms for HMM computation:
the forward algorithm, the Viterbi algorithm, and the expec-
tation maximization (EM) algorithm [36]. In the forward
algorithm, the goal is to compute the probability of each
state for each transition given a particular sequence of obser-
vations. Namely, in this algorithm, we compute Pr[qk =
Si |X1 . . . XT ]. In the Viterbi algorithm, after observing the
outcomes, the goal is to construct the path of states which
is the most likely among all possible paths that can pro-
duce the observations, as well as the probability of the most
likely path. In other words, for any given sequence of obser-
vations, each path has a certain probability of producing
that sequence of observations. The output of the Viterbi
algorithm is the path with the highest probability and the
value of the probability. The computation performed in the
Viterbi algorithm uses the forward algorithm. In the EM
algorithm, the goal is to learn the HMM. Namely, given a
sequence of observations, this algorithm computes the para-
meters of the most likely HMM that could have produced
this sequence of observations. All of these three algorithms
use dynamic programming techniques and have complexity
of O(TN2).

Because in this work we use speaker recognition to
demonstrate secure techniques for HMM computation, we
focus on the Viterbi algorithm used in speaker recognition.
The techniques developed in this work, however, can also
be used to construct secure solutions for the other two algo-
rithm. In what follows, we provide a brief description of the
Viterbi algorithm and refer the reader to online materials for
the forward and EM algorithms. In the algorithm below, P∗
is the probability of the most likely path for a given sequence
of observations and q∗ = 〈q∗

1 , . . . , q∗
T 〉 denotes the most

likely path itself. The computation uses dynamic program-
ming to store intermediate probabilities in δ, after which the
path of the maximum likelihood is computed and placed in
q∗.
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〈P∗, q∗〉 ← Viterbi(λ = 〈N , T, π, A, β〉)
1. InitializationStep: for i = 1 to N do

(a) δ1(i) = πiβi1

(b) ψ1(i) = 0

2. RecursionStep: for k = 2 to T and j = 1 to N do

(a) δk( j) =
(

max
1≤i≤N

[δk−1(i)ai j ]
)

β jk

(b) ψk( j) = argmax
1≤i≤N

[δk−1(i)ai j ]
3. TerminationStep:

(a) P∗ = max
1≤i≤N

[δT (i)]
(b) q∗

T = argmax
1≤i≤N

δT (i)

(c) for k = T − 1 to 1 do q∗
k = ψk+1

(
q∗
k+1

)

4. Return 〈P∗, q∗〉

In speaker recognition, we apply the Viterbi algorithm to
extracted voice features and an HMM that was created using
a GMM and training voice features. The overall computation
then consists of forming an HMM using GMM computation
and executing the Viterbi algorithm, as given next.

〈P∗, q∗〉 ← HMM(N , T, π, A, α,w,μ,Σ, X)

1. For j = 1 to N and k = 1 to T , compute β jk as in
equation 1 using α,wi ’s, μi ’s, Σi ’s, and Xk .

2. Set λ = 〈N , T, π, A, β〉.
3. Execute 〈P∗, q∗〉 = Viterbi(λ).
4. Return 〈P∗, q∗〉.

4 Framework

In this section, we introduce two categories of secure compu-
tation that we consider in this work (two- and multi-party),
precisely define the computation to be carried out, and for-
malize two security models for secure computation.

4.1 Two-party computation

The first category of secure computation that we consider is
secure two-party computation.Without loss of generality, we
will refer to the participants as the client and the server. Using
speaker recognition as the example application, the setting
can be described as follows: The client possesses a voice sam-
ple, the server stores a model that represents how a registered
user speaks, and user authentication is performed by conduct-
ing HMM computation on the client’s and server’s inputs.
Therefore, for the purposes of this work, we assume that the

client owns the observations to an HMM, i.e., X1, . . . , XT ,
and the server holds the parameters of the HMM and GMM,
i.e., N , vector π , matrix A, α, mixture weights w, vectors
μ, and matrices Σ . Because even the parameters of HMM
might reveal information about the possible input observa-
tions, to build a fully privacy-preserving solution in which
the server does not learn information about user biometrics,
the server should not have access to the HMM parameters
in the clear. For that reason, we assume that the server holds
the parameters π, A, B, w,μ, and Σ in an encrypted form
and computation proceeds on encrypted data. While there
are other underlying techniques for secure two-party compu-
tation (such as garbled circuit evaluation), we view storing
HMMdata encrypted at the server and evaluating the function
on encrypted data as the best option, despite high computa-
tional overhead associated with this approach. If encryption
is not used, the HMM values will need to be split into ran-
dom shares, with one share of each value stored by the client
and the other share stored by the server. This creates mul-
tiple issues, one of which is that the client’s state is large
and the shares of the HMM must be present on each device
fromwhich the client wants to authenticate. The second issue
is that a malicious user will need to be forced to enter the
original HMM data into each authentication session to avoid
tamperingwith the authentication process, which is generally
not known how to do.

To permit the computation to take place on encrypted
data, we resort to an encryption scheme with special prop-
erties, namely semantically secure additively homomorphic
public-key encryption scheme (defined below). Furthermore,
to ensure that neither the server can decrypt the data it stores,
nor the (untrusted) client can decrypt the data (or a func-
tion thereof) without the server’s consent, we utilize a (2,
2)-threshold encryption scheme. Informally, it means that
the decryption key is partitioned between the client and the
server, and each decryption requires that both of them par-
ticipate. This means that the client and the server can jointly
carry out the HMM computation and make the result avail-
able to either or both of them. For concreteness of exposition,
we will assume that the server learns the outcome.

A public-key encryption scheme is defined by three algo-
rithms (Gen,Enc,Dec), where Gen is a key generation
algorithm that on input of a security parameter 1κ produces
a public-private key pair (pk, sk); Enc is an encryption
algorithm that on input of a public key pk andmessagem pro-
duces ciphertext c; andDec is a decryption algorithm that on
input of a private key sk and ciphertext c produces decrypted
message m or special character ⊥ that indicates failure.
For conciseness, we use notation Encpk(m) and Decsk(c)
in place of Enc(pk,m) and Dec(sk, c), respectively. An
encryption scheme is said to be additively homomorphic if
applying an operation to two ciphertexts results in the addi-
tion of the messages that they encrypt, i.e., Encpk(m1) ·
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Encpk(m2) = Enc(m1+m2). This property also implies that
Encpk(m)k = Encpk(k · m) for a known k. In a public key
(n, t)-threshold encryption scheme, the decryption key sk is
partitioned among n parties, and t ≤ n of them are required
to participate in order to decrypt a ciphertext while t − 1
or fewer parties cannot learn anything about the underlying
plaintext. Lastly, a semantically secure encryption scheme
guarantees that no information about the encrypted message
can be learned from its ciphertext withmore than a negligible
(in κ) probability. Semantically secure additively homomor-
phic threshold public-key encryption schemes are known,
one example of which is Paillier encryption [29].

We obtain that in the two-party setting, the client and
the server share the decryption key to a semantically secure
additively homomorphic (2, 2)-threshold public-key encryp-
tion scheme. The client has private input X1, . . . , XT and
its share of the decryption key sk; the server has input
Encpk(πi ) for i ∈ [1, N ],Encpk(ai j ) for i ∈ [1, N ] and
j ∈ [1, N ],Encpk(wi ) for i ∈ [1, α], encryption of each
element of μi and Σi for i ∈ [1, α], and its share of sk. The
computation consists of executing the Viterbi algorithm on
their inputs, at the end of which the server learns P∗ and
q∗
i for i = 1, . . ., T . The size of the problem, i.e., para-
meters N , T, α, and f , are assumed to be known to both
parties.

4.2 Multi-party computation

The second category of secure computation that we con-
sider is secure multi-party computation on HMMs. In this
setting, either a number of parties hold inputs to a multi-
observer HMM or one or more clients wish to outsource
HMM computations to a collection of servers. More gen-
erally, we divide all participants into three groups: (i) the
input parties who collectively possess the private inputs, (ii)
the computational parties who carry out the computation,
and (iii) the output parties who receive the result(s) of the
computation. These groups can be arbitrarily overlapping,
which gives great flexibility in the setup and covers all pos-
sible cases of joint multi-party computation (where the input
owners carry out the computation themselves, select a subset
of them, or seek help of external computational parties) and
outsourcing scenarios (by either a single party or multiple
input owners).

To conduct computation on protected values in this set-
ting, we utilize an information-theoretically secure threshold
linear secret sharing scheme (such as Shamir secret sharing
scheme [38]). In a (n, t)-threshold secret sharing scheme, a
secret value s is partitioned among n participants in such a
way that the knowledge of t or fewer shares information-
theoretically reveals no information about s, while t + 1 or

more shares allow for efficient reconstruction of s.1 Such
schemes avoid the use of computationally expensive public-
key encryption techniques and instead operate on small
integers (in a field Fp, normally with prime p) of sufficient
size to represent all values. In a linear secret sharing scheme,
any linear combination of secret shared values is performed
by each participant locally (which in particular includes addi-
tion and multiplication by a known), while multiplication
requires interaction of the parties. It is usually required that
t < n/2 which implies n > 2.

We then obtain that in this setting the input parties share
their private inputs among n > 2 computational parties,
the computational parties execute the Viterbi algorithm on
secret-shared values, and communicate shares of the result
to the output parties, who reconstruct the result from their
shares. As before, the size of the problem—namely, the para-
meters N , T, α, and f—is known to all parties.

4.3 Security model

Security of any multi-party protocol (with two or more par-
ticipants) can be formally shown according to one of the
two standard security definitions (see, e.g., [20]). The first,
weaker securitymodel assumes that the participants are semi-
honest (also known as honest-but-curious or passive), defined
as they follow the computation as prescribed, but might
attempt to learn additional information about the data from
the intermediate results. The second, stronger security model
allows dishonest participants to arbitrarily deviate from the
prescribed computation. We show our techniques secure in
both of these models and next present formal security defin-
itions for semi-honest and malicious security settings.

Definition 1 Let parties P1, . . . , Pn engage in a protocol
Π that computes a (possibly probabilistic) n-ary func-
tion f : ({0, 1}∗)n → ({0, 1}∗)n , where Pi contributes
input ini and receives output outi . Let VIEWΠ(Pi ) denote
the view of participant Pi during the execution of pro-
tocol Π . More precisely, Pi ’s view is formed by its
input and internal random coin tosses ri , as well as mes-
sages m1, . . . ,mk passed between the parties during pro-
tocol execution: VIEWΠ(Pi ) = (ini , ri ,m1, . . .,mk). Let
I = {Pi1 , Pi2 , . . . , Piτ } denote a subset of the partici-
pants for τ < n and VIEWΠ(I ) denote the combined
view of participants in I during the execution of protocol
Π (i.e., VIEWΠ = (VIEWΠ(Pi1 , . . . ,VIEWΠ(Piτ ))) and
f I (in1, . . . , inn) denote the projection of f (in1, . . . , inn) on

1 We note that themeaning of t is defined differently in the literature for
(n, t)-threshold encryption schemes and (n, t)-threshold secret sharing
schemes. That is, in the former case, t shares are sufficient for recon-
structing the secret, while in the latter case this can be achieved only
with t+1 shares. For compatibilitywith priorwork, we choose to follow
standard definitions.
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the coordinates in I (i.e., f I (in1, . . . , inn) consists of the i1th,
…, iτ th elements that f (in1, . . ., inn) outputs). We say that
protocolΠ is τ -private in the presence of semi-honest adver-
saries if for each coalition I of size at most τ and all ini ∈
{0, 1}∗ there exists a probabilistic polynomial time simulator
SI such that {SI (inI , f I (in1, . . ., inn)), f (in1, . . ., inn)} ≡
{VIEWΠ(I ), (out1, . . .,outn)}, where inI = (in1, . . ., inτ )

and “≡” denotes computational or statistical indistinguisha-
bility.

In the two-party setting, we have that n = 2, τ = 1. The
participants’ inputs in1, in2 and outputs out1,out2 are set as
described above. In the multi-party setting, n > 2, τ < n/2,
and the computational parties are assumed to contribute no
input and receive no output (to ensure that they can be dis-
joint from the input and output parties). Then the input parties
secret-share their inputs among the computational parties
prior the protocol execution takes place, and the output par-
ties receive shares of the output and reconstruct the result
after the protocol termination. This setting then implies that,
in order to comply with the above security definition, the
computation used in protocol Π must be data-oblivious,
which is defined as requiring the sequence of operations and
memory accesses used in Π to be independent of the input.

Security of a protocol in the malicious model is shown
according to the ideal/real simulation paradigm. In the ideal
execution of the protocol, there is a trusted third party (TTP)
that evaluates the function on participants’ inputs. The goal
is to build a simulator S who can interact with the TTP and
the malicious party and construct a protocol’s view for the
malicious party. A protocol is secure in the malicious model
if the view of the malicious participants in the ideal world is
computationally indistinguishable from their view in the real
world where there is no TTP. Also the honest parties in both
worlds receive the desired output. This gives us the following
definition of security in the malicious model.

Definition 2 Let Π be a protocol that computes function
f : ({0, 1}∗)n → ({0, 1}∗)n , with party Pi contributing
input ini . Let A be an arbitrary algorithm with auxiliary
input x and S be an adversary/simulator in the ideal model.
Let REALΠ,A(x),I (in1, . . ., inn) denote the view of adver-
sary A controlling parties in I together with the honest
parties’ outputs after real protocol Π execution. Similarly,
let IDEAL f,S(x),I (in1, . . ., inn) denote the view of S and
outputs of honest parties after ideal execution of func-
tion f . We say that Πτ -securely computes f if for each
coalition I of size at most τ , every probabilistic A in the
real model, all ini ∈ {0, 1}∗ and x ∈ {0, 1}∗, there is
probabilistic S in the ideal model that runs in time poly-
nomial in A’s runtime and {IDEAL f,S(x),I (in1, . . ., inn)} ≡
{REALΠ,A(x),I (in1, . . ., inn)}.

4.4 Performance evaluation of secure protocols

Performance of secure computation techniques is of grand
significance, as protecting secrecy of data throughout the
computation often incurs substantial computational costs.
For that reason, besides security, efficient performance of the
developed techniques is one of our primary goals. In both of
our settings, computation of a linear combination of protected
values can be performed locally by each participant (i.e.,
on encrypted values in the two-party setting and on secret-
shared values in themulti-party setting), whilemultiplication
is interactive. Because often the overhead of interactive
operations dominates the runtime of a secure multi-party
computation algorithm, its performance is measured in the
number of interactive operations (such as multiplications, as
well as other instances which, for example, include open-
ing a secret-shared value in the multi-party setting or jointly
decrypting a ciphertext in the two-party setting). Further-
more, the round complexity, i.e., the number of sequential
interactions, can have a substantial impact on the overall
execution time and serves as the second major performance
metric. Lastly, in the two-party setting, public-key operations
(and modulo exponentiations in particular) impose a signif-
icant computational overhead and are used as an additional
performance metric.

In this work, we use notation [x] to denote that the
value of x is protected, either through encryption or secret
sharing.

5 Building blocks

Before presenting our solution, we give a brief descrip-
tion of the building blocks from the literature used in our
solution.

First note that having secure implementations of addi-
tion and multiplication operations alone can be used to
securely evaluate any functionality on protected values rep-
resented as an arithmetic circuit. Prior literature, however,
concentrated on developing secure protocols for commonly
used operations which are more efficient than general tech-
niques. In particular, the literature contains a large number
of publications for secure computation on integers such as
comparisons, bit decomposition, and other operations. From
all of the available techniques, we have chosen the building
blocks that yield the best performance for our construction,
which are listed in [1].

Note that we use the following complexity for elementary
arithmetic operations: Addition and subtraction of two pro-
tected values in either two- or multi-party setting involves
no communication. Multiplication in the multi-party setting
requires each computational party to send values to all other
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parties and wait for values from them, which is performed
simultaneously. This is treated as an elementary interactive
operation in a single round. In the two-party setting, multi-
plication of two encrypted values Encpk(a) and Encpk(b)
is computed interactively, during which one party chooses
a random value r , forms Encpk(a − r) using homomorphic
properties of the encryption scheme, and helps the second
party to decrypt a − r . After that the parties locally compute
Encpk(br) andEncpk(b(a−r)), respectively, and exchange
the ciphertexts to obtain Encpk(ba).

5.1 Floating-point building blocks

For floating-point operations, we adopt the same floating-
point representation as in [2]. Namely, a real number x is
represented as 4-tuple 〈v, p, s, z〉, where v is an �-bit nor-
malized significand (i.e., the most significant bit of v is 1), p
is a k-bit (signed) exponent, z is a bit that indicates whether
the value is zero, and s is a bit set only when the value is
negative. We obtain that x = (1−2s)(1− z)v ·2p. As in [2],
when x = 0, we maintain that z = 1, v = 0, and p = 0.

The work [2] provides a number of secure floating-point
protocols, some of which we use in our solution as floating-
point building blocks. While the techniques of [2] also
provide the capability to detect and report errors (e.g., in
case of division by 0, overflow or underflow, etc.), for sim-
plicity of presentation, we omit error handling in this work.
The building blocks from [2] that we use here are:

– 〈[v], [p], [z], [s]〉 ← FLMul(〈[v1], [p1], [z1], [s1]〉,
〈[v2], [p2], [z2], [s2]〉) performs floating-point multipli-
cation of its two real valued arguments.

– 〈[v], [p], [z], [s]〉 ← FLDiv(〈[v1], [p1], [z1], [s1]〉,
〈[v2], [p2], [z2], [s2]〉) allows the parties to perform
floating-point division using 〈[v1], [p1], [z1], [s1]〉 as the
dividend and 〈[v2], [p2], [z2], [s2]〉 as the divisor.

– 〈[v], [p], [z], [s]〉 ← FLAdd(〈[v1], [p1], [z1], [s1]〉,
〈[v2], [p2], [z2], [s2]〉)performs the computation of addi-
tion (or subtraction) of two floating-point arguments.

– [b] ← FLLT(〈[v1], [p1], [z1], [s1]〉, 〈[v2], [p2], [z2],
[s2]〉) produces a bit, which is set to 1 iff the first floating-
point argument is less than the second argument.

– 〈[v], [p], [z], [s]〉 ← FLExp2(〈[v1], [p1], [z1], [s1]〉)
computes the floating-point representation of exponen-
tiation [2x ], where [x] = (1 − 2[s1])(1 − [z1])[v1]2[p1].

These protocolswere given in [2] only for themulti-party set-
ting, but we also evaluate their performance in the two-party
setting using the most efficient currently available integer
building blocks (as specified in [1]). The complexities of
the resulting floating-point protocols in both settings can be
found in [1].

5.2 Zero-knowledge proofs of knowledge for Paillier
encryption scheme

As previously mentioned, our solution in the two-party set-
ting relies on an additively homomorphic threshold encryp-
tion scheme. In the malicious security setting, our construc-
tion relies on zero-knowledge proofs of knowledge (ZKPKs).
Instantiations of such proofs of knowledge are typically spe-
cific to the encryption scheme used, which requires us to
choose an appropriate homomorphic encryption scheme.

In this work, we thus utilize Paillier cryptosystem [29],
which is is a popular additively homomorphic encryption
scheme, threshold variants of which are available [5,15]. To
be able to specify our solutions, we first need to describe
the details of the encryption scheme. At key generation time,
Gen, choose two prime numbers p and q, the size of which
is based on the security parameter κ , set N = pq, set integer
s ≥ 1, and choose an appropriate generator g ∈ Z

∗
Ns+1 . The

public key consists of g and N , and the plaintext space is
ZNs . The private decryption key sk can be distributed (as in
the threshold variant) and is computed from the knowledge
of factors p and q. Encryption Enc of message x ∈ ZNs

is performed by choosing r ∈ Z
∗
Ns+1 at random and set-

ting the ciphertext to gxr N
s
mod Ns+1. For simplicity, we

use notation Enc(·) instead of Encpk(·) and in what follows
we also use Enc(x, r) to denote Paillier encryption of mes-
sage x when the random value used during encryption was
r . Threshold decryption is performed by each party apply-
ing their share of the decryption key sk to a ciphertext and
then combining partially decrypted ciphertext to recover the
plaintext. To simplify presentation, we also let s = 1 in the
rest of the paper.

Examples of existing ZKPKs for Paillier encryption
include a proof of knowledge of plaintext [5,15], a proof
that two plaintexts are equal [5], a proof that a ciphertext
encrypts one value from a given set [5,15], a proof that a
ciphertext encrypts a product of two other given encrypted
values [13], and a range proof for the exponent a of plaintext
ba [24]. We utilize three particular ZKPKs: a proof that a
ciphertext encrypts one of the two given values, a proof of
plaintext knowledge, and a proof of plaintext multiplication.
Belowwe specify these ZKPKsmore formally using the pop-
ular notation of [8], ZKPK{(S, P): R}, which states that the
prover possesses set S as her secret values, the values in set
P are known to both parties, and the prover proves statement
R.

– PK12((a, ρ), (a′, p1, p2)) = ZKPK{(a, ρ), (a′, p1,
p2) : (a′ = Enc(a, ρ)) ∧ ((a = p1) ∨ (a = p2))}.
Here, the prover wishes to prove to the verifier that
a′ = Enc(a, ρ) is an encryption of one of the two known
plaintexts p1 and p2.
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– PKP((a, ρ), (a′)) = ZKPK{(a, ρ), (a′) : (a′ = Enc
(a, ρ))}. The prover wishes to prove to the verifier that
he knows the value a that the ciphertext a′ encrypts (and
thus that a′ is a valid ciphertext).

– PKPM((b, ρb), (a′, b′, c′)) = ZKPK{(b, ρb), (a′, b′, c′):
(b′ = Enc(b, ρb)) ∧ (a′ = Enc(a)) ∧ (c′ = Enc(c)) ∧
(c = ab)}. The prover wishes to prove to the verifier that
c′ encrypts the product of the corresponding plaintexts of
a′ and b′, where the prover knows the plaintext of b′ (i.e.,
this is multiplication of an encrypted value by a known
plaintext value).

For additional information (such as the appropriate choice of
parameters), we refer the reader to [13,15].

6 Secure Viterbi and GMM computation in the
semi-honest model

Nowwe are ready to put everything together and describe our
privacy-preserving solution for HMM and GMM computa-
tion based onViterbi algorithmusing floating-point numbers.

To execute the HMM algorithm given in Sect. 3, we
first need to perform GMM computation to derive the out-
put probabilities b jk using Eq. 1. It was suggested in [40]
that the i th components of a GMM, gi (x) = − 1

2 (x −
μi )

TΣ−1
i (x−μi ), is represented as xT Yi x+yTi x+yi0,where

Yi = − 1
2Σ

−1
i , yi = Σ−1

i μi , and yi0 = − 1
2μ

T
i Σ−1

i μi . The
suggested representation increases the number of additions
and multiplications than the original formula and therefore
would result in a slower performance. In particular, because
FLAdd is a relatively expensive protocol, we would like to
minimize the use of this function. Thus, we suggest that the
parties first subtractμi from theobservedvector x and engage
in matrix multiplication to compute gi . Note that the parties
can run the above computation in parallel for all values of
i, j , and k in Eq. 1. After its completion, the parties proceed
with performing the secure version of the Viterbi algorithm.

The Viterbi algorithm requires (floating-point) multipli-
cation, max, and argmax. The multiplication is implemented
using FLMul, while the max and argmax operations can be
implemented using FLLT in a tree like fashion (i.e., we first
compare every two adjacent elements, then every two maxi-
mum elements from the first round of comparisons, etc.). To
perform argmax of two floating-point numbers at indices i
and j , let [b] be the outcome of theFLLT operation applied to
the numbers at these indices. Then we set argmax to equal to
[b] j+(1−[b])i . Therefore, argmax of a number of floating-
point values can be computed in a tree like fashion using the
above method for each comparison.

After completing the recursion step of the Viterbi algo-
rithm, we need to retrieve the sequence of states in the HMM

that resulted in the most likely path (steps 3b and 3c in
the Viterbi algorithm). If the sequence of these states can
be made publicly available, then the parties open q∗

i for
1 ≤ i ≤ T to learn the sequence. However, in a more likely
event that this sequence needs to stay protected from one or
more parties, we make use of the protocol Pow2 from [2].
To compute [q∗

t ] = ψt+1([q∗
t+1]) given [q∗

t+1], we execute
BitDec(Pow2([q∗

t+1] − 1, N ), N , N ) that will produce N
bits, all of which are 0 except the bit at position q∗

t+1. We
then multiply each bit of the result by the respective element
of the vectorψt+1 and add the resulting values to obtain [q∗

t ].
In the two-party setting, however, one of the parties (e.g.,

the server) will learn the sequence as its output and a more
efficient approach is possible. The idea is to take advan-
tage of the fact that all encrypted values of the matrix ψ

are held by both parties. In this case, the party receiving
the output retrieves Encpk(ψt+1(q∗

t+1)) using its knowledge
of q∗

t+1 which became available to that party in the previ-
ous step, randomizes the ciphertext by multiplying it with a
fresh encryption of 0, and sends the result to the other party.
Note that this randomization does not change the value of the
underlying plaintext, but makes it such that the party receiv-
ing it cannot link the randomized ciphertext to one of the
encryptions it possesses. This party then applies decryption
to the received ciphertext and sends it back to the receiving
party, who finishes the decryption, learns q∗

t , and continues
to the next iteration of the computation.

Our secure solution has the same asymptotic complex-
ity as the original algorithm, expressed as a function of
parameters N , T, α, and f . In particular, the GMM com-
putation involves O(α f 2NT ) floating-point operations and
the Viterbi algorithm itself uses O(N 2T ) floating-point
operations (the recursion step dominates the complexity of
the overall algorithm). In the two-party setting, our solu-
tion that employs homomorphic encryption additionally has
dependency on the computational security parameter κ and
the bitlength representation of the underlying floating-point
values, while in the multi-party setting based on secret shar-
ing, the complexity has dependency only on the bitlength
representation of the floating-point values. More precisely,
using the complexities of our building blocks as speci-
fied in [1], we obtain that the GMM computation in the
two-party setting involves O(α f 2NT (� log � + k)) modulo
exponentiations (which depend on the security parameter
κ) and communicates O(α f 2NT (� log � + log k)) cipher-
texts and/or decryption shares (which likewise depend on
the security parameter κ). Here, � is the significant bitlength
and k is the exponent bitlength of the floating-point num-
bers. In the multi-party setting, the complexity becomes
O(αNT ( f 2� log �+ f 2k+�2)) interactive operations (which
depend on the number of participating parties n). The Viterbi
algorithm involves O(N 2T k) modulo exponentiations and
communicates O(N 2T log �) ciphertexts/decryption shares
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in the two-party setting, and it uses O(N 2T (� + k)) interac-
tive operations in the multi-party setting.

The security of our solution can be stated as follows:

Theorem 1 Assuming security of prior building blocks, the
Viterbi solution is secure both in the two-party and multi-
party settings in the semi-honest security model.

Proof (Proof sketch) The security of our solution according
to Definition 1 is based on the fact that we only combine pre-
viously known secure building blocks. Such building blocks
take protected inputs and produce protected outputs, which
means that their composition does not reveal information
about private values. In particular, we can apply Canetti’s
composition theorem [9], which states that a composition of
secure sub-protocols leads to security of the overall solution.
More precisely, in both two-party and multi-party settings,
we can build a simulator S of the overall solution according to
Definition 1, which without access to private data produces
a view that cannot be distinguished from the participants’
views in the real protocol execution. Our simulator calls the
corresponding simulators for the underlying building blocks.
Then because each underlying simulator produces a view
that is either computationally or statistically indistinguish-
able (depending on the setting) from the view of a particular
party and no information is revealed while combining the
building blocks, the simulation of each participant’s view in
the overall protocol also cannot be distinguished from a real
protocol execution. We thus obtain security of our solution
in the semi-honest model.

7 Experimental results

In this section, we report on the results of implementation of
our HMM solution. Note that because of numerous applica-
tions of HMMs, their use in certain contexts might differ, and
we therefore chose to implement only the coreHMMcompu-
tationwithout theGMMcomponent. The output probabilities
matrix β can be computed based on observations via differ-
ent means (one of which is GMM) and for the purposes of
our implementation we choose discrete assignment of β jk’s
based on the sequence of observations X1, . . ., XT . In par-
ticular, for each j = 1, . . ., N and k = 1, . . ., T , we set
β jk = b j,i using matrix B, where i corresponds to the index
that the value Xk takes (out of M possible outcomes). In the
two-party setting, thismeans that the clientwho possesses the
observations X1, . . ., XT receives encrypted matrix B from
the server and setsEnc(β jk) = Enc(b j,i )·Enc(0) according
to Xk , where Enc(0) is used for randomization purposes. In
the multi-party case, the parties jointly hold X and B in pro-
tected form and obliviously set β jk based on Xk (i.e., without
knowing what cell of B was used to set each β jk).

Our implementations were built in C/C++. All machines
used in the experiments had identical hardware with four-
core 3.2GHz Intel i5-3470 processors with Red Hat Linux
2.6.32 and were connected via a 1Gb LAN. Only one core
was used during the experiments (i.e., multi-threading was
not used).

In what follows, we first describe our two-party experi-
ments followed by the experiments in the multi-party setting.
In our implementations, we represent floating-point numbers
using 32-bit significands and (signed) 9-bit exponents (plus
sign and zero bits as described earlier in this work).

In the two-party setting, we utilized (2, 2)-threshold
Paillier encryption, which was implemented using Miracl
library [12] for large number arithmetic. The experiments
we report were conducted using a 1536-bit modulus for Pail-
lier encryption. Because performance of our building blocks
is not available in prior literature, we provide runtimes of
integer and floating-point operations used in our implemen-
tation in Fig. 2 and overall HMM computation in Fig. 3.
The parameters N and T for HMM experiments were cho-
sen as suggested in the speaker recognition literature [4,25].
That is, a typical value for N is 3 and T is around 100 (using
32ms/frame in [25]).We separately vary N and T to illustrate
how performance depends on these values. All experiments
were run five times and the mean value is given.

Because techniques based on homomorphic encryption
are computationally intensive, we separate all work into
offline and online, where the offline work consists of com-
putation that can be performed before the inputs become
available (e.g., generating random values and encrypting
them). We thus measure offline work for client and server
and the overall online runtime. In our experiments with iden-
ticalmachines, the server performs somewhatmorework and
thus takes longer, but in practice the server is expected to be
a more powerful machine with client’s performance being
the bottleneck. For integer and floating-point operations, we
report the time per operationwhen a number of operations are
executed in a single batch. Batch execution reduces commu-
nication overhead when simultaneous execution of a number
of operations is possible (as is the case for HMMs). This
results in reducing the total online time.

Figure 2 presents performance of integer and floating-
point operations in the two-party setting as described above.
The two-party performance of HMM computation in Fig. 3
is consistent with the complexity of the algorithm, which has
linear dependency on T and quadratic dependency on N (i.e.,
the slope for N = 3 is different from the slope for N = 6).
In both figures, most of offline work is done by the server,
which benefits overall execution time.

In the multi-party setting, we utilized three computational
parties that operate on shares of the data formed using a
(3, 1)-threshold linear secret sharing scheme. The implemen-
tation was built using the PICCO compiler [41], in which
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an HMM program written in an extension of C was com-
piled into its secure distributed implementation. PICCO is
a source-to-source compiler that produces a C program and
utilizes the GMP [21] library for the underlying arithmetic
and OpenSSL [28] implementation of AES for protecting
communication. All arithmetic was performed in field Fp

for a 114-bit prime p (the modulus size was determined as
described in [41]). The results ofHMMexperiments are given
in Fig. 4. While separation between online and offline work
is also possible in this setting (e.g., the parties generate a
large number of random values throughout the protocol exe-
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Fig. 4 Performance of HMM computation for varying N and T in the
multi-party setting

cution), we do not distinguish between these types of work
and list the overall performance in the online category. This
is in part because we use an existing tool for our experiments
and in part because the multi-party performance is orders of
magnitude faster than encryption-based two-party computa-
tion and is already practical.

In conclusion, we note that our two-party setting was con-
strained in terms of the tools that could be employed for
secure computation. That is, in order to provably protect
HMMs from the server, we have to resort to strong pro-
tection mechanisms such as homomorphic encryption, the
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threshold version of which was required to ensure that no
individual party could independently decrypt ciphertexts and
learn unauthorized information. In general, alternative tech-
niques of better performance (such as garbled circuits) are
possible and even additively homomorphic encryption can be
substantially faster (see, e.g., [7]) when threshold decryption
is not required.One suggestion for improving performance of
the two-party setting for this application is to involve neutral
third parties, which would allow for the use of multi-party
techniques.

8 Secure Viterbi and GMM computation in the
malicious model

We next show how strengthen our solution to maintain
security in the presence of malicious participants who can
arbitrarily deviate from the prescribed behavior. Our solu-
tion for the multi-party setting, covered in Sect. 8.1, majorly
follows from prior work and is described rather concisely.
Most of the section is thus dedicated to the two-party setting,
where in Sect. 8.2 we describe the necessary components for
building a solution secure against malicious adversaries and
in Sects. 8.3–8.8 present protocols for two-party multiplica-
tion, comparison, truncation, inversion, prefixmultiplication,
and bit decomposition, respectively, together with their mali-
cious model security analysis.

8.1 Multi-party setting

The security of our solution in the multi-party setting can
also be extended to the malicious security model. In that
case, to show security in the presence of malicious adver-
saries, we need to ensure that (i) all participants prove that
each step of their computation was performed correctly and
that (ii) if some dishonest participants quit, others will be
able to reconstruct their shares and proceed with the rest of
the computation. The above is normally achieved using a
verifiable secret sharing scheme (VSS), and a large num-
ber of results have been developed over the years (e.g.,
[3,14,19] and many others). In particular, because any linear
combination of shares is computed locally, each participant
is required to prove that it performed each multiplication
correctly on its shares. Such results normally work for
t < n

3 in the information theoretic or computational set-
ting with different communication overhead and under a
variety of assumptions about the communication channels.
Additional proofs associated with this setting include proofs
that shares of a private value were distributed correctly
among the participants (when the dealer is dishonest) and
proofs of proper reconstruction of a value from its shares
(when not already implied by other techniques). In addi-
tion, if at any point of the computation the participants

are required to input values in a specific form, they would
have to prove that the values they supplied are well-formed.
Such proofs are needed by the implementations of some
of our building blocks (e.g., RandInt that prescribed the
parties to choose a random value of a specific bitlength).
Thus, security of our protocols in the malicious model in the
multi-party setting can be achieved by using a VSS scheme,
where a range proof such as [34] (secure in the computa-
tional setting) or an alternative mechanism suggested in [6]
(secure in the information-theoretic sense) will be addition-
ally needed for the building blocks. These VSS techniques
would also work with malicious input parties, who would
need to prove that they generate legitimate shares of their
data.

8.2 Two-party setting

To show security of our solution in the presence of mali-
cious adversaries in the two-party setting,we likewise need to
enforce correct execution of all operations. However, unlike
the multi-party setting, this time security no longer follows
from prior work and requires new tools.

To ensure that both participants follow all steps of the
computation, we employ ZKPKs. Because such proofs are
usually tied to the internal workings of the underlying homo-
morphic encryption scheme, we develop our solution based
on the Paillier encryption scheme.

Our approach consists of designing protocols secure in
the presence of malicious adversaries for a number of build-
ing blocks used to build floating-point operations. Then after
applying Canetti’s composition theorem [9], we can guaran-
tee security of larger building blocks and the overall solution.
To determine which building blocks need to be implemented
in the stronger security model with fully malicious partici-
pants, we analyze each floating-point operation used in this
work.

– FLMul is implemented using protocols Trunc, LT, OR,
XOR, and Mul as the building blocks. Trunc in turn
depends on TruncPR and LT protocols.2 OR and XOR
protocols are built directly fromMul. This means that we
need to realize malicious versions of multiplicationMul,
truncation TruncPR, and comparison LT.

– Besides some of the building blocks listed above, FLDiv
additionally uses SDiv, which in turn is built using Mul
and TruncPR protocols. Thus, no additional protocols
are needed.

– FLAdd calls new building blocks EQ, Pow2, BitDec,
PreOR, and Inv. Our implementation of EQ is built on

2 Throughout this description we don’t describe the functionality of
each building block. Such descriptionwill be given only for the building
blocks that we need to implement in the malicious model.
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LT and Mul. Pow2 calls BitDec and PreMul. PreOr
calls PreMul and Mod2, which is equivalent to Trunc.
Thus, we need to implement three new building blocks
bit decomposition BitDec, inverse computation Inv, and
prefix multiplication PreMul in the malicious model.

– FLLT does not call any new building blocks.
– Similarly, FLExp calls only integer building blocks dis-

cussed above and FLMul that can be assembled from
integer building blocks.

To summarize, we need to provide implementations of
six functionalities secure in the malicious model, which are
described next:

– Enc(xy) ← MalMul(Enc(x),Enc(y)) is a fundamental
building block, which performs multiplication of its two
encrypted input values x and y.

– Enc(b) ← MalLT(Enc(x),Enc(y), �) performs com-
parison of two encrypted values x and y of size � and
outputs encrypted bit b, where b = 1 iff x < y.

– Enc(y) ← MalTruncPR(Enc(x), �, k) truncates k bits
of encrypted x , which has bitlength �. The output is prob-
abilistic, where the least significant bit of the result ymay
differ from that of �x/2k�.3

– Enc(y) ← MalInv(Enc(x)) produces (encrypted) inver-
sion y = x−1 of encrypted x .

– Enc(y1), . . . ,Enc(yk) ← MalPreMul(Enc(x1), . . . ,
Enc(xk)) performs prefix multiplication of k nonzero
encrypted values x1, . . ., xk , where the result is computed
as yi = ∏i

j=1 x j for each i ∈ [1, k].
– Enc(xk−1), . . . ,Enc(x0) ← MalBitDec(Enc(a), �, k)

extracts k least significant bits of (encrypted) x , where �

is the bitlength of x .

Before we proceed with the description of the individual
protocols, we note that the optimization to the termina-
tion step in the two-party setting described in Sect. 6 (for
the semi-honest model) does not easily generalize to the
malicious setting. We therefore assume that the computa-
tion proceeds according to the general solution in Sect. 6,
which is constructed using building blocks which we already
treat in this section (such as bit decomposition and prefix
multiplication). Thus, security of the termination step will
follow from the composition of other underlying secure sub-
protocols.

In the rest of this section, we treat one protocol at a time
and report performance of each new protocol in themalicious
model (together with supporting ZKPKs) in Table 1.

3 We note that such probabilistic version is sufficient in some cases,
while in others the function can be changed to always produce correct
truncation with the use of extra comparison.

8.3 Secure two-party multiplication in the malicious
model

Now we describe a two-party multiplication protocol secure
in the presence of a malicious participant. In this protocol,
both parties hold Enc(x),Enc(y)without any knowledge of
x or y and receive Enc(xy) as their output. The protocol
is very similar to the one given in [16] for the multi-party
setting. The intuition is that P1 and P2 blind encryption of x
with their respective randomvalues r1 and r2 and decrypt c =
x+r1+r2. This allows them to computeEnc(y)c, fromwhich
they subtract encrypted yr1 and yr2 to recover the result.
Doing so securely will require that P1 and P2 prove correct-
ness of Enc(yr1) and Enc(yr2), respectively, using PKPM.

Enc(xy) ← MalMul(Enc(x),Enc(y))

Public inputs include public key pk for (2, 2)-threshold Pail-
lier encryption scheme and private inputs include shares of
the corresponding secret key.

1. Each Pj chooses at random r j ∈ ZN .
2. Each Pj computes r ′

j = Enc(r j , ρ j ), z j = Enc(y)r j ·
Enc(0) = Enc(y · r j ), and executes PKPM((r j , ρ j ),

(Enc(y), r ′
j , z j )) to prove correctness of z j to the other

party.
3. Both parties locally compute c′ = Enc(c) = Enc(x) ·

r ′
1 · r ′

2 and decrypt c′ to recover c.
4. Each party computes z = Enc(y)c = Enc(yx + yr1 +

yr2) and Enc(xy) = z · z−1
1 · z−1

2 .

Following [13], we show security of this and other protocols
in a hybrid model where decryption is replaced with ideal
functionality. That is, instead of producing partial decryp-
tions of a ciphertext and combining them to recover the
corresponding plaintext, decryption is performed by sub-
mitting the ciphertext to a black-box which outputs the
underlying plaintext. Then following the arguments of [13],
we also obtain security in the real model when ideal decryp-
tion is instantiatedwith a real threshold decryption algorithm.

Theorem 2 Assuming semantic security of the homomor-
phic encryption scheme and security of the building blocks,
the above MalMul is secure in the malicious setting in the
hybrid model with ideal decryption.

Proof We prove security of MalMul based on Definition 2.
Because this protocol is completely symmetric, without loss
of generality we assume P1 is malicious. In that case, in the
ideal world a simulator S1 locates between P1 and the TTP
and simulates P1’s view after receiving Enc(x) and Enc(y),
as well as Enc(xy) from the TTP. During step 2, S1 receives
r ′
1 and z1, and acts as a verifier for PKPM (extracting r1).
Then, S1 sets r ′

2 = Enc(w − r1 − x) for a randomly chosen
w ∈ ZN , computes z2 = (Enc(xy))−1(Enc(y))w−r1 , and
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uses the simulator of PKPM to interact with P1 and prove
validity of r ′

2, z2. During step 3, S1 sends w as the decrypted
value c to P1. To show that P1’s output at the end of the
simulation corresponds to correct Enc(xy), recall that the
simulator sets r2 = w−r1− x . Thus,w = x+r1+r2 in step
3 is exactly what the simulator needs to decrypt. Therefore,
P1 correctly computes the output in step 4.

To show that the simulated view is indistinguishable from
the view in the hybrid model (with ideal decryption), we
note that the simulator produces encrypted values in step
2, which are indistinguishable from ciphertexts sent during
the protocol execution because of semantic security of the
encryption scheme. Similarly, the simulation of PKPM is
indistinguishable from real execution due to its security prop-
erties. Lastly, the value w returned by the simulator in step 3
is distributed identically to the value c decrypted during pro-
tocol execution. We also note that both during the simulation
and real execution the computation aborts only when a mali-
cious party fails to correctly complete PKPM as the prover.

8.4 Secure two-party comparison in the malicious model

We next provide our comparison protocol secure in the pres-
ence of malicious adversaries. We start with the semi-honest
protocol used in [23] and modify it to achieve security in a
stronger model.

Before we proceed with the description of the solution
itself, we observe that the protocol of [23] requires the par-
ties to choose k-bit random numbers (for sufficiently large
k) with some particular restrictions. Namely, each party
chooses random r and r ′ with the constraint that r > r ′
(which equivalently means that 0 < r − r ′ < 2k). There-
fore, each party needs to prove to the other that her choice
of random numbers is according to the protocol’s require-
ment, without revealing the actual values of such random
numbers. Since the maximum value of r − r ′ is equal to
the maximum value of r , this task is equivalent to a closed
range proof. To achieve this, we develop a ZKPK that a
ciphertext encrypts a value that belongs to a particular range
of integers. Based on [24], x ∈ [0, H ] iff we can write
x = ΣM

j=0(x j Hj ), where Hj = ⌊
(H + 2 j )/2 j+1

⌋
, M =⌊

log2 H
⌋
and x j ∈ {0, 1}. Such decomposition of x into

the x j ’s can be computed using the following algorithm:

〈x0, . . . , xM 〉 ← RangeDecompose(x, H)

1. M = ⌊
log2(H)

⌋
.

2. a0 = x .
3. for j = 0 to M do
4. Hj = ⌊

(H + 2 j )/2 j+1
⌋
.

5. if a j ≥ Hj then x j = 1 otherwise x j = 0.
6. a j+1 = a j − x j · Hj .
7. return 〈x0, · · · , xM 〉.

We assume that this algorithm implicitly stores all computed
Hj ’s which are available for the consequent computation.

For x ∈ [L , H ], we can use the transform of y = x − L ,

have y ∈ [0, H − L], and obtain y = Σ
�log2(H−L)�
j=0 (y j Hj )

by callingRangeDecompose on y. Note that we now have

M = ⌊
log2(H − L)

⌋
and therefore x = Σ

�log2(H−L)�
j=−1 (x j

Hj ), where H−1 = L , x−1 = 1, Hj = �(H + 2 j − L)/

2 j+1�, and x j = y j ∈ {0, 1} for j from 0 to M .
We provide our range ZKPK, called RangeProof, next.

It is based on another proof from [24], which uses range
decomposition of the input and ensures that each step of the
algorithm was performed correctly.

RangeProof(x, L , H, e) = ZKPK{(x, ρ), (e, L , H) : (e =
Enc(x, ρ)) ∧ (L ≤ x ≤ H)}

1. The prover sets 〈x0, . . . , xM 〉 ← RangeDecompose
(x − L , H − L), x−1 = 1, and H−1 = L .

2. For j = 0, . . ., M , the prover chooses r j ∈ ZN at random
such that ρ = ∏M

j=0 r j and computes c j = Enc(x j ·
Hj , r j ) and c−1 = Enc(L , 0).

3. For j = 0, . . ., M , the prover executes PK12((x j ·
Hj , r j ), (c j , 0, Hj )) to prove that c j is an encryption of
either 0 or Hj .

4. The verifier checks whether c−1 = Enc(L , 0) and e =∏M
j=−1 c j .

A secure ZKPK should satisfy three properties [22]: (1) com-
pleteness, which informally means that if the statement is
true, then an honest verifier (who follows the protocol)will be
convinced by an honest prover; (2) soundness, which requires
that if the statement is false, then no cheating prover (regard-
less of the cheating strategy) can convince an honest verifier,
except with negligible probability, that the statement is true;
and (3) zero-knowledge, which means that if the statement is
true, then no cheating verifier can learn anything other than
the fact that the statement is true. Below, we show that our
range proof is a zero-knowledge proof of knowledge.

Theorem 3 Assuming semantic security of the homomor-
phic encryption scheme, the ZKPKRangeProof is complete,
sound, and zero-knowledge.

Proof (Proof sketch) The completeness property follows
easily. Namely, if the input is in fact in the range, an honest
verifier will be convinced of this statement by the prover.
This ZKPK is sound too, because if the input is not in the
specified range and the cheating prover can successfully fin-
ish the protocol with a nonnegligible probability, then the
underlying ZKPK PK12 is not sound as well. The latter,
however, is not true due to [15]. The zero-knowledge prop-
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erty follows from the fact that if the verifier is a cheater,
then the only place that she can employ a cheating strategy
is in step 4. Note that in step 3, all values are encrypted
and thus reveal no information to the verifier. Then because
PK12 in step 4 is zero-knowledge [15], the overall solution is
zero-knowledge as well. Alternatively, this property could be
derived from the fact that sequential composition of ZKPKs
is a zero-knowledge proof (from [22]).

Nowwe can turn our attention to the comparison protocol.
We first detail the semi-honest protocol from [23] adopted
to the two-party setting and then modify it to be secure in
stronger security model with malicious participants.

Enc(b) ← LT(Enc(x),Enc(y), �)

Public inputs includepublic key pk for a (2, 2)-thresholdPail-
lier encryption scheme and private inputs consist of shares
of the corresponding secret key.

1. P1 chooses b1 ∈ {0, 1} and r1, r ′
1 ∈ {0, 1}�+κ at random,

where r1 > r ′
1 and κ is a statistical security parameter.

2. P2 chooses b2 ∈ {0, 1} and r2, r ′
2 ∈ {0, 1}�+κ at random

such that r2 > r ′
2.

3. P1 computes Enc(c) = Enc(x − y), a1 = Enc(1− b1),
and a2 = Enc(b1).

4. P1 computes a3 = Enc(c)(−1)b1r1 · Enc((−1)1−b1r ′
1) =

Enc((−1)b1cr1+(−1)1−b1r ′
1) and sends a1, a2, a3 to P2.

5. P2 computes a′
1 = a1+b2 ·Enc(0), a′

2 = a2−b2 ·Enc(0),
where Enc(0) is used for randomization purposes.

6. P2 computes a′
3 = ar2(−1)b2

3 ·Enc((−1)1−b2r ′
2) and sends

〈a′
1, a

′
2, a

′
3〉 to P1.

7. The parties decrypt a′
3. If the decrypted value is< N 2/2,

output a′
2; otherwise, output a

′
1.

In the above, a value in the range [0, N 2/2) is treated as
nonnegative and a value in the range [N 2/2, N 2) as negative.
The idea is that the output (encrypted) bit b is determined
based on whether x − y is positive or negative. P1 either
keeps the sign of x − y or reverses it in a3 based on its
random bit b1 obfuscates the difference x − y using two
random values r1, r ′

1.P2 applies the same operations to the
result using its random bit b2 and random values r2 and r ′

2.
The parties decrypt the resulting value and set the output
based on the sign of the decrypted value and bits b1 and
b2. In this protocol, κ is a statistical security parameter, the
maximum value which can take to guarantee correctness is
(�log(N 2)� − 2)/2.

Our comparison protocol secure in the malicious model
is given next. In what follows, we use the fact that (−1)b =
1−2b and (−1)1−b = 2b−1when b is a bit.We also express
a′
1 asEnc(1+2b1b2−b1−b2) anda′

2 asEnc(b1+b2−2b1b2).

Enc(b) ← MalLT(Enc(x),Enc(y), �)

Public inputs includepublic key pk for a (2, 2)-thresholdPail-
lier encryption scheme and private inputs consist of shares
of the corresponding secret key.

1. Each Pj sets e1 = Enc(1, 0), e−1 = Enc(−1, 0) =
(e1)−1, andEnc(c) = Enc(x−y) = Enc(x)·Enc(y)−1.

2. Each Pj chooses b j ∈ {0, 1}, r j , r ′
j ∈ {0, 1}�+κ at

random s.t. r j > r ′
j , and sends to P3− j z( j,1) =

Enc(b j , ρ j ), z( j,2) = Enc(r j , ρ′
j ) and z( j,3) =

Enc(r ′
j , ρ

′′
j ).Pj executes PK12((b j , ρ j ), (z( j,1), 0, 1)),

RangeProof(r j , 0, H, z( j,2)),RangeProof(r ′
j , 0, H,

z( j,3)), andRange−Proof(r j −r ′
j , 1, H, z( j,2) ·z−1

( j,3)) to
prove that z( j,1), z( j,2), and z( j,3) are well-formed, where
H = 2�+κ − 1.

3. Each party locally computes z( j,4) = Enc(1 − 2b j ) =
e1 ·(z( j,1))−2 and z( j,5) = Enc(2b j −1) = (z( j,1))2 ·e−1.

4. P1 computes z6 = Enc((1 − 2b1)c)) = Enc(c)1−2b1 ·
Enc(0, α1), where α1 is newly selected as randomness
during encryption, z7 = Enc(r1(1 − 2b1)c) = zr16 ,

and z8 = Enc((2b1 − 1)r ′
1) = z

r ′
1

(1,5), and sends to
P2z6, z7, and z8.P1 also executes PKPM((1 − 2b1 mod
N , ρ−2

1 ), (Enc(c), z(1,4), z6)),PKPM((r1, ρ′
1 + α1),

(z6, z(1,2), z7)), and PKPM((r ′
1, ρ

′′
1 ), (z(1,5), z(1,3), z8))

to prove that z6, z7, and z8 are well-formed.
5. Each party locally computes a3 = Enc(r1(1− 2b1)c) +

(2b1 − 1)r ′
1) = z7 · z8.

6. P2 computes z′6 = Enc(b1b2) = zb2(1,1)·Enc(0, α2), z′7 =
a1−2b2
3 ·Enc(0, α3), where α2 and α3 are newly selected
as randomness during encryption, z′8 = (z′7)r2 , and

z′9 = z
r ′
2

(2,5), and sends to P1z′6, z′7, z′8, and z′9.P2 executes
PKPM((b2, ρ2 + α2), (z(1,1), z(2,1), z′6)),PKPM((1 −
2b2 mod N , ρ−2

2 + α3), (a3, z(2,4), z′7)),
PKPM((r2, ρ′

2), (z
′
7, z(2,2), z

′
8)), and PKPM((r ′

2, ρ
′′
2 ),

(z(2,5), z(2,3), z′9)) to prove that z′6, z′7, z′8, and z′9 arewell-
formed.

7. Each party locally computes a′
3 = z′8 · z′9.

8. The parties decrypt a′
3. If the decrypted value is <N2/2,

output z(1,1) · z(2,1) · (z′6)−2; otherwise, output e1(z′6)2 ·
(z(1,1) · z(2,1))−1.

Our protocol closely follows the logic of the semi-honest
solution, where we additionally need to employ zero-
knowledge proofs to provide each party with the ability to
verify that the computation was performed correctly by the
other party. We do not explicitly compute both a′

1 and a′
2

as in the semi-honest version, but rather compute and return
either a′

1 or a
′
2 in step 8 after decrypting the content of a

′
3.We

also explicitly keep track of random values used for creating
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ciphertexts and use them as input into ZKPKs. This ensures
that the protocol is fully specified.

Our security result can be stated as given next. Recall that
we use a hybrid model with ideal decryption, which we then
replace with a real instantiation of threshold decryption.

Theorem 4 Assuming semantic security of the homomor-
phic encryption and security of the building blocks, MalLT
protocol is secure in the presence of a malicious adversary
in the hybrid model with ideal decryption.

Proof Weprove security ofMalLT based onDefinition 2.We
separately consider the cases when P1 is malicious and when
P2 is malicious. In the ideal world, we build a simulator S j

that is located between malicious party Pj and the TTP and
simulates Pj ’s view of the protocol after querying the TTP
for Pj ’s output.

First, we treat the case of malicious P1 and build
the corresponding simulator S1. Upon obtaining the input
Enc(x),Enc(y), �, S1 queries the TTP for Enc(b). In step
1, S1 performs the same computation as P2. In step 2,
S1 acts as a verifier for P1’s ZKPKs PK12 and Range-
Proofs and extracts P1’s input to the proofs. It also chooses
a random bit w and computes Enc(b∗) = Enc(b)1−w ·
(e1(Enc(b))−1)w = Enc(b · (1 − w) + (1 − b) · w) =
Enc(b ⊕ w). In other words, if w = 0 then b∗ = b and
otherwise b∗ = 1 − b.S1 similarly computes Enc(b2) =
Enc(b∗ ⊕ b1) and chooses and encrypts two random values
r2 and r ′

2 according to the protocol. S1 now simulates P2’s
proofs PK12 and RangeProof using Enc(b2),Enc(r2),
and Enc(r ′

2). In steps 3–5, S1 acts like P2, i.e., S1 per-
forms the prescribed computation in steps 3 and 5 and acts
as a verifier for P1’s proofs PKPMs during step 4. Dur-
ing step 6, S1 computes z′6 = Enc(b2)b1 · Enc(0, β1) and

z′7 = a1−2w′
3 ·Enc(0, β2), wherew′ is a newly generated ran-

dom bit and β1, β2 correspond to freshly chosen randomness
during encryption. S1 also computes the remaining z′8 and z′9
according to the protocol. Note that using randomw′ in place
of b2 makes the content of ciphertexts z′7 and z′8 inconsistent
with other encrypted values, but P1 cannot tell this fact due
to security of the encryption scheme. S1 then simulates the
PKPM proofs in step 6. Finally, in step 7, S1 sends a pos-
itive properly chosen value ĉ ∈ [0, N 2/2) to P1 if w = 0,
and a negative properly chosen value ĉ ∈ [N 2/2, N 2) other-
wise. To form ĉ, S1 randomly samples the distribution of the
absolute value of x − y (using application-specific knowl-
edge of distributions of x and y); let the randomly chosen
value be denoted by d.S1 then sets ĉ = (r1 · d − r ′

1)r2 − r ′
2 if

w = 0 and ĉ = N 2− (r1 ·d−r ′
1)r2+r ′

2 otherwise. Note that
ciphertexts z′7 and z′8 are not used by the simulator beyond
step 6 and thus their contents do not affect correctness of the
output.

To show that the view simulated by S1 results in P1 obtain-
ing correct output, we note that w = b1 ⊕ b2 ⊕ b (because

b1 = b2 ⊕ b ⊕ w). Now, if w = 0, b = b1 ⊕ b2 =
b1 + b2 − 2b1b2. Thus, S1 needs to produce a positive
value (<N2/2) as the decryption of a′

3 in step 8, so that
z(1,1) · z(2,1) · (z′6)−2 = Enc(b1 + b2 − 2b1b2) = Enc(b) is
produced as the output in step 8. Otherwise, if w = 1, b =
1⊕b1⊕b2 = 1− (b1⊕b2) = 1−b1−b2+2b1b2. Thus, S1
needs to produce a negative value (≥ N 2/2) as the decryp-
tion of a′

3 in step 8, so that P1 uses e1(z
′
6)

2 ·(z(1,1)z(2,1))−1 =
Enc(1 + 2b1b2 − b1 − b2) = Enc(b) as the output.

To show that the view simulated by S1 is indistinguishable
from P1’s view in the hybrid model (with ideal decryption),
we note that most values the simulator sends to P1 (e.g.,
steps 2 and 6) are encrypted and thus are indistinguishable
from ciphertexts sent during the protocol execution because
of semantic security of the encryption scheme. Similarly,
the simulations of PK12, RangeProofs, and PKPMs are
indistinguishable from real execution due to their security
properties. The only value that S1 provides to P1 in the clear
is the decryption of a′

3 in step 7. This value was chosen by
S1 in the same way as during the protocol after randomly
sampling the absolute value of x − y according to what is
known about distributions of x and y. Thus, P1 is unable
to distinguish the value received during the simulation from
the value received during the protocol execution. We also
note that during the simulation S1 aborts the computation
in exactly the same circumstances when the computation is
aborted in the real execution (namely, when a ZKPK does not
verify) and thus the simulation cannot be distinguished from
real execution on the grounds of computation termination.

Now let P2 be malicious. We build a simulator S2 that
constructs P2’s view similar to the way S1 did for P1. Most
of S2’s computations are the same as S1’s computations, and
thus we concentrate on the differences. In this case, S2 com-
putes Enc(b∗) in step 2 in the same way S1 did (i.e., by
choosing a random bitw and using b∗ = b⊕w) and then sets
Enc(b1) = Enc(b∗ ⊕ b2). In step 4, S2 selects a random bit
w′ and a random number ξ1 to be used as randomness during
encryption and computes z6 = Enc(c)1−2w′ · Enc(0, ξ1).S2
also computes z7 and z8 according the protocol and simu-
lates the PKPM proofs (step 4). Note that using w′ instead
of b1 (which S2 doesn’t know) in the computation of z6
makes the content of ciphertexts z7, a3, z′7, z′8, and a′

3 incon-
sistent with other encrypted values, but P2 is unable to tell
this fact because of security of the encryption scheme. In
steps 5 and 6, S2 acts like P1. Finally, in step 7, S2 pro-
vides a positive properly chosen value c̃ ∈ [0, N 2/2) to P2
if w was 0, and otherwise a negative properly chosen value
c̃ ∈ [N 2/2, N 2).Note that noneof incorrectly formedcipher-
texts (z6, z7, a3, z′7, z′8, and a′

3) are used in the computation
of the protocol’s output and correctness of the result is not
affected.

Correctness of the output that P2 learns at the end of S2’s
simulation can be shown in a way similar to that of S1’s
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simulation. In other words, we now also have that w = b1 ⊕
b2 ⊕ b and producing a positive value as the decryption of
a′
3 when w = 0 and producing a negative value when w = 1
results in P2 computing Enc(b).

What remains to show is that the view simulated by S2 is
indistinguishable from P2’s view in the hybridmodel. Similar
to S1’s case, we have that all values that S2 sends to P2 are
either protected via semantically secure encryption (steps 2
and 6), are simulated ZKPKs, or a plaintext c̃ chosen in the
same way as ĉ in S1 simulation and is indistinguishable from
the value decrypted during real protocol execution. Thus,
assuming security of the building blocks, the claim follows.

8.5 Secure two-party truncation in the malicious model

In this section we are going to describe our (probabilistic)
truncation protocol MalTruncPR secure in the malicious
model.Our starting pointwas the semi-honestTruncPR from
[10], which we adjusted to the two-party setting.4 We pro-
vide the modified version of the protocol in the “Appendix”.
On input of an �-bit encrypted x and a positive integer k < �,
the protocol computes �x/2k� + b, where b is either 0 or 1.
In other words, the protocol truncates k least significant bits
of x , but might also increment the result by 1.

At high level, the solution proceeds by the parties jointly
and privately choosing two random values r ′ and r ′′ of
bitlength k and �−k+κ , respectively, where κ is a statistical
security parameter. The parties then blind x by (κ+�)-bit ran-
domnumber r = 2kr ′′+r ′ anddecrypt the sum c = x+r . The
encrypted output y is computed as (x+r ′′−(c mod 2k))2−k .

We next present our MalTruncPR protocol. As before,
we follow the logic of the semi-honest protocol, but need to
employ stronger building blocks and ZKPKs.

Enc(y) ← MalTruncPR(Enc(x), �, k)

Public inputs include public key pk = (g, N , θ) for a
(2, 2)-threshold Paillier encryption scheme and private inputs
consist of shares of the corresponding secret key.

1. Each Pj randomly chooses r ′
( j,i) ∈ {0, 1} for i ∈

[1, k], computes z( j,i) = Enc(r ′
( j,i), ρ( j,i)) using ran-

domness ρ( j,i), sends to the other party each z( j,i), and
executes PK12((r ′

( j,i), ρ( j,i)), (z( j,i), 0, 1)) to prove that
z( j,i) encrypts a bit.

2. The parties compute z′i = Enc(ri ) = Enc(r ′
(1,i) ⊕

r ′
(2,i)) = z(1,i) · z(2,i) · (MalMul(r ′

(1,i), r
′
(2,i)))

−2 for
i ∈ [1, k].

3. Each party locally computes Enc(r ′) = Enc(
∑k

i=1 r
2i
i )

= ∏k
i=1(z

′
i )
2i .

4 We also note that TruncPR in [10] was designed to work on both
positive and negative integers, while in our case supporting only non-
negative integers is sufficient.

4. Each Pj randomly chooses r ′′
j ∈ [0, 2�+κ−k − 1], com-

putes z′′j = Enc(r ′′
j , ρ

′
j ), sends to the other party z′′j , and

executes RangeProof((r ′′
j , ρ

′
j ), (0, 2

�+κ−k − 1, z′′j )) to
prove that z′′j is well-formed.

5. Each party locally computesEnc(r ′′) = Enc(r ′′
1 +r ′′

2 ) =
Enc(r ′′

1 ) · Enc(r ′′
2 ).

6. The parties locally compute Enc(c) = Enc(x + 2kr ′′ +
r ′) = Enc(x) · Enc(r ′′)2k · Enc(r ′) and jointly decrypt
c.

7. Each party locally computes c′′ = � c
2k

� and and produces
Enc(y) = Enc(c′′ − r ′′) = Enc(c′′, 0) · Enc(r ′′)−1 as
the output.

One significant difference from the semi-honest protocol is
theway random k-bit value r ′ is generated. In the semi-honest
version, r ′ is set to the sum r ′

1 + r ′
2, where r

′
i is a (k − 1)-bit

random value chosen by Pi . To make this stronger for the
malicious model, we could enforce that each party chooses
its respective r ′

i from the correct range using a range proof.
Unfortunately, this is not sufficient for security. In the mali-
cious model, the parties are not guaranteed to draw random
values uniformly at random from the specified range and we
can no longer expect that the sum r ′

1 + r ′
2 is k bits long.

Suppose that a malicious party Pi sets its r ′
i to 0, which guar-

antees that the sum r ′ is k − 1 bits long. Then after the sum
c = x +2kr ′′ +r ′ is decrypted, the adversary can learn unin-
tended information about the kth bit of x . In particular, if the
kth bit of c is 0, the malicious party knows that the kth bit
of x is 0. To eliminate this vulnerability, we instead require
that both participants select their r ′

i ’s to be k bits long and r
′

is computed via XOR as r ′
1 ⊕ r ′

2.
Another conceptual difference from the semi-honest solu-

tion is that instead of using c mod 2k in computing the result,
the parties now use �c/2k�. This simplifies computation of
the output, but results in identical outcome. As before, we
explicitly keep track of random values used for creating
ciphertexts and use them as input into ZKPKs.

We next show security of this protocol.

Theorem 5 Assuming semantic security of the homomor-
phic encryption and security of the building blocks, Mal-
TruncPR protocol is secure in the presence of a malicious
adversary in the hybrid model with ideal decryption.

Proof We prove security of MalTruncPR based on Defini-
tion 2. When Pj is malicious, we need to construct simulator
S j that provides a view for Pj in the ideal world, which is
indistinguishable from the protocol execution in the hybrid
model. In what follows, without loss of generality, let us
assume that P1 is malicious; a very similar proof can be
given for the case of malicious P2 because of the protocol’s
symmetry.
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In step 1, S1 acts similar to what the protocol prescribes
for P2: it receives P1’s ciphertexts z(1,i)’s, acts as a verifier
for P1’s ZKPKs (extracting P1’s inputs), forms P2’s random
bits and corresponding ciphertexts, and acts as a prover in
ZKPKs to show their correctness. During step 2, S1 invokes
MalMul’s simulator. In step 4, S1 receives z′′1 from P1 and
acts as a verifier for P1’sRangeProof for z′′1 (extracting r ′′

1 ).
S1 also chooses random ĉ ∈ {0, 1}�+κ , computes c̃ = ĉ +
2kr ′′

1 and z′′2 = Enc(�ĉ/2k� − y) = Enc(�ĉ/2k�)Enc(y)−1,
sends z′′2 to P1, and simulates the RangeProof for z′′2. In
step 6, S1 outputs c̃ as the decrypted value. We note that c̃ is
formed by the simulator inconsistently with the values used
for computing r ′. This is not a problem because P1 does not
use r ′ in producing its output and inconsistency of encrypted
values cannot be detected as well.

To see that P1 obtains the correct (encrypted) output at the
end of S1’s simulation, recall that S1 sets z′′2 = Enc(�ĉ/2k�−
y) in step 4. Thismeans that P1 computes in step 5 encryption
of r ′′ = �ĉ/2k� − y + r ′′

1 .P1 also learns c = c̃ = ĉ+ 2kr ′′
1 in

step 6 and consequently sets c′′ = �ĉ/2k� + r ′′
1 .P1 then sets

the (encrypted) output to c′′ −r ′′ = �ĉ/2k�+r ′′
1 − (�ĉ/2k�−

y + r ′′
1 ) = y, as desired.

To show that the view simulated by S1 is indistinguish-
able from the view in the hybrid model execution, we note
that indistinguishability of encrypted data and all building
blocks (i.e., ZKPKs, and MalMul) follows security of the
building blocks. The only value revealed to P1 in the clear
is c = ĉ in step 6. The value produced by the simulator,
however, is statistically indistinguishable from the value of
c used during real execution (using statistical security para-
meter κ). In addition, both during the simulation and real
execution the computation aborts in identical circumstances
when the malicious party fails to correctly complete ZKPKs
as the prover. Thus, indistinguishability of simulated and real
views follows.

8.6 Secure two-party inversion in the malicious model

The next protocol that we treat is computation of a multi-
plicative inverse of an encrypted integer x , where x is treated
as a group element. As before, our starting point was a semi-
honest inversion protocol, which we adapt to the two-party
setting and list in the “Appendix”. The main idea of this pro-
tocol is for the parties to jointly generate a random element r
of the group, compute and decrypt c = r · x , invert plaintext
c, and then compute the inverse of x as r · c−1 = x−1 in the
encrypted form.

Our protocol in the malicious model follows the logic of
the semi-honest solution, but we modify the way Enc(r x) is
computed from Enc(x). In particular, instead of having the
parties compute Enc(r) and call multiplication on Enc(r)
and Enc(x), we avoid calling relatively costly MalMul. We
instead have each party Pj compute (and prove correctness

of) Enc(x)r j = Enc(r j x) for its respective share r j of r .
The parties then locally compute Enc(r x) = Enc(r1x +
r2x) and proceed with the rest of the protocol as before.

Enc(y) ← MalInv(Enc(x))

Public inputs include public key pk = (g, N , θ) for a
(2, 2)-threshold Paillier encryption scheme and private inputs
consist of shares of the corresponding secret key.

1. Each Pj chooses at random r j ∈ Z
∗
N , computes z j =

Enc(r j , ρ j ) using fresh randomness ρ j , sends z j to the
other party, and executes PKP((r j , ρ j ), (z j )) to prove
that z j was formed correctly.

2. Each Pj computes z′j = Enc(r j x) = Enc(x)r j , sends
z′j to the other party, and executes PKPM((r j , ρ j ),

(Enc(x), z j , z′j )) to prove correctness of z′j .
3. Each party locally computes Enc(c) = Enc((r1x +

r2x) = Enc(r1x) · Enc(r2x) and the parties jointly
decrypt c.

4. Each party locally computes and outputs Enc(y) =
Enc((r1 + r2)c−1) = (z1z2)c

−1
.

Security of this protocol is stated as follows:

Theorem 6 Assuming semantic security of the homomor-
phic encryption and security of the building blocks, MalInv
protocol is secure in the presence of a malicious adversary
in the hybrid model with ideal decryption.

Proof We prove security of MalInv based on Definition 2.
Because the protocol is symmetric,we assumewithout loss of
generality that P1 is malicious and build the corresponding
simulator S1. In the beginning of the protocol (step 1), S1
receives z1, chooses a random number ĉ ∈ Z

∗
N , computes

z2 = Enc(ĉ · y − r1) = Enc(y)ĉ · z−1
1 using output Enc(y)

received from the TTP, and sends z2 to P1. S1 also simulates
its PKP proof and acts as a verifier for P1’s proof obtaining
r1. In step 2, S1 receives z′1, chooses a random number r2 ∈
Z

∗
N , computes z′2 = Enc(r2x) = Enc(x)r2 , and sends z′2 to

P1. Both parties also execute their respective PKPM proofs,
where S1 uses simulation. Note that now z2 and z′2 have
inconsistent contents, but this fact is not known to P1 due to
security of encryption. In step 3, S1 output ĉ as the result of
decryption.

To show that P1 computes correct outputEnc(x−1), recall
that the simulator outputs c = ĉ and P1 computes the result
as (z1z2)c

−1
. In the simulated view, we have (z1z2)c

−1 =
(Enc(r1) · Enc(ĉy − r1))ĉ

−1 = Enc(ĉ · y · ĉ−1) = Enc(y),
as desired.

To show that the view simulated by S1 is indistinguishable
from the execution view in the hybrid model, notice that
all information that P1 receives is indistinguishable in both
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views due to security of the underlying building blocks with
the exception of plaintext c that P1 learns in step 3, which we
need to analyze. During the simulation, S1 outputs ĉ chosen
uniformly at random from the group. In the real execution,
P1 learns (r1 + r2)x , which is also a random element of
the group. Thus, the values produced in the two worlds are
indistinguishable. Lastly, in both worlds the execution aborts
only when the malicious party fails to correctly complete
ZKPKs, which completes this proof.

8.7 Secure two-party prefix multiplication in the
malicious model

We next present prefix multiplication protocol, which on
input of integers x1, . . ., xk , outputs y1, . . ., yk , where each
yi = ∏i

j=1 x j . We provide the semi-honest prefix multipli-
cation protocol adapted to the two-party setting from [10] in
the “Appendix”. We used the protocol as our starting point
and modified it to be secure in the stronger security model
with malicious participants.

The main idea behind PreMul protocol is for the parties
to compute and open Enc(mi ) = Enc(ri · xi · r−1

i−1) for
i ∈ [2, k] and Enc(m1) = r1x1, where each ri is a random
element of the group and the revealed values completely hide
each input xi . Then, each party can compute the output as
yi = r−1

i ·(∏i
j=1m j ) = r−1

i ·ri ·xi ·r−1
i−1 · · · r2·x2·r−1

1 ·r1·x1 in
the encrypted form using encryptions of r−1

i ’s and plaintext
mi ’s. Each ri is jointly chosen by the parties at random and
computation of each r−1

i proceeds similar to the inversion
protocol. Namely, the parties also generate encryptions of
random values si ’s, decrypt products ui = ri · si , and use
inverses of ui ’s in the consecutive computation.

Enc(y1), . . .,Enc(yk) ← MalPreMul(Enc(x1), . . .,Enc(xk))

Public inputs include public key pk = (g, N , θ) for a
(2, 2)-threshold Paillier encryption scheme and private inputs
consist of shares of the corresponding secret key.

1. Each Pj chooses r( j,i), s( j,i) ∈ Z
∗
N at random for i ∈

[1, k], computes z( j,i) = Enc(r( j,i), ρ( j,i)) and z′( j,i) =
Enc(s( j,i), ρ′

( j,i)), and sends each z( j,i) and z′(i, j) to the
other party. Pj also executesPKP((r( j,i), ρ( j,i)), (z( j,i)))
and PKP((s( j,i), ρ′

( j,i)), (z
′
( j,i))) for each i to prove that

z( j,i)’s and z′( j,i)’s are well-formed.
2. Each Pj locally computes zi = Enc(ri ) = Enc(r(1,i) +

r(2,i)) = z(1,i) · z(2,i) and z′i = Enc(si ) = Enc(s(1,i) +
s(2,i)) = z′(1,i) · z′(2,i) for i ∈ [1, k].

3. Each Pj computes a( j,i) = Enc(ri · s( j,i)) = (zi )s( j,i) for
i ∈ [1, k], sends to the other party a( j,i)’s, and executes
PKPM((s( j,i), ρ′

( j,i)), (zi , z
′
( j,i), a( j,i)) to prove that each

a( j,i) is well-formed.

4. Each Pj computes b( j,i) = Enc(ri+1 · s( j,i)) =
(zi+1)

s′
( j,i) for i ∈ [1, k − 1], sends to the other party

b( j,i)’s, and executes PKPM((s( j,i), ρ′
( j,i)), (zi+1, z′( j,i),

b( j,i))) to prove that b( j,i) is well-formed.
5. The parties locally compute Enc(ui ) = Enc(ri · si ) =

a1,i · a2,i for i ∈ [1, k] and jointly decrypt each ui .
6. Each party locally computesEnc(vi ) = Enc(ri+1 ·si ) =

b(1,i) · b(2,i) for i ∈ [1, k − 1].
7. Each party locally setsEnc(w1) = Enc(r1) = z1 and for

i ∈ [2, k] computes Enc(wi ) = Enc(vi−1 · (ui−1)
−1) =

Enc(vi−1)
(ui−1)

−1
.

8. Each party also locally computes Enc(ti ) = Enc(si ·
(u−1

i )) = (z′i )(ui )
−1

for i ∈ [1, k].
9. For i ∈ [1, k], the parties compute Enc(mi ) =

MalMul(Enc(wi ),Enc(xi )) and decrypt each mi .
10. Each party sets Enc(y1) = Enc(x1) and locally com-

putes Enc(yi ) = Enc(ti
∏i

j=1m j ) = (Enc(ti ))
∏i

j=1 m j

for i ∈ [2, k] as the output.

The high-level logic of our solution is the same as in the semi-
honest setting, but we modify how some encrypted values
are computed to result in a faster solution. In particular, we
avoid the use of the multiplication protocol for computing
encrypted ui ’s and vi ’s and instead employ local multiplica-
tions and proofs of correctness usingPKPM’s. The computed
values are the same, but themechanism for their computation
differs resulting in computational savings.

We next show security of this protocol:

Theorem 7 Assuming semantic security of the homomor-
phic encryption and security of the building blocks, Mal-
PreMul protocol is secure in the presence of a malicious
adversary in the hybrid model with ideal decryption.

Proof Asbefore,we proceed according to the security notion
from Definition 2 and build a simulator S j that creates a
view for Pj in the ideal model, which is indistinguish-
able from Pj ’s view in protocol’s real execution. Because
MalPreMul is symmetric, we assume without loss of gener-
ality that P1 is malicious and build a corresponding simulator
S1.

In the beginning, S1 submits inputs to theTTPand receives
the output Enc(yi )’s. S1 also chooses random m̂i , di ∈ Z

∗
N

and computes ûi = di (
∏i

j=1 m̂ j ) for i ∈ [1, k]. In step 1, S1
receives z(1,i) and z′(1,i) from P1 for each i . It chooses its own
random r(2,i)’s, encrypts them as z(2,i) = Enc(r(2,i), ρ(2,i)),
computes z′(2,i) = Enc(yi ·ti−s(1,i)) = Enc(yi )ti ·(z′(1,i))−1,
re-randomizes each z′(2,i) (bymultiplying it to a fresh encryp-
tion of 0), and sends to P1 each z(2,i) and z′(2,i).S1 invokes
simulator for its own and P1’s PKP proofs (extracting P1’s
inputs). S1 doesn’t perform any computation in step 2. In step
3, S1 receives a(1,i)’s from P1, chooses random elements
a(2,i) from the ciphertext space, and sends these a(2,i)’s to
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P1. S1 uses simulation for PKPM interaction. Similarly, in
step, S1 receives b(1,i)’s from P1, chooses random elements
b(2,i) from the ciphertext space, and sends these a(2,i)’s to
P1. S1 also uses simulation for PKPM interactions. Note
that using random a(2,i)’s and b(2,i)’s makes the content of
ciphertexts Enc(ui ) and Enc(vi ) in consecutive steps incon-
sistent with other encrypted values, but P1 cannot tell this
fact. In step 5, S1 uses ûi ’s as decryptions and then skips
steps 6–8. In step 9, S1 invokes simulator for MalMul to
interact with P1, and provides m̂i ’s to P1 as decrypted val-
ues.

To show that P1 computes correct output during S1’s
simulation, first notice that each ûi = di (

∏i
j=1 m̂ j ) and

thus
∏i

j=1 m̂ j = ûi · d−1
i , where ûi ’s and m̂i ’s are used

as ui ’s and mi ’s, respectively. In addition, the simula-
tor sets s(2,i) = di · yi − s(1,i), so that si = s(1,i) +
s(2,i) = di · yi . Now, when P1 computes the i th com-
ponent of the output, it uses computation (on encrypted
values) ti (

∏i
j=1m j ) = si · u−1

i (
∏i

j=1mi ) = di · yi ·
û−1
i (

∏i
j=1 m̂i ) = di · yi · û−1

i · ûi · d−1
i = yi , as

required.
To show that the view simulated by S1 is indistinguish-

able from P1’s view in the hybrid model, we only need to
show that plaintexts ui ’s and mi ’s that the simulator outputs
do not violate indistinguishability, as the remaining portions
of the protocol are indistinguishable because of the assump-
tion that all building blocks and ZKPKs are secure. Similarly,
indistinguishability cannot be violated if the execution aborts
in the ideal or real model, but not in the other because the
only time the execution terminates in either world is when
the malicious party does not follow the computation and
fails to complete a ZKPK. Regarding the release of m̂i ’s
and ûi ’s by the simulator, we first note that the release of
m̂i ’s only reveals no information to P1 because each m̂i was
chosen uniformly at random. Each ûi , on the other hand, is
a function of m̂i ’s, but each ui was randomized by a new
random value di and thus ûi is also a random element of the
group. In the real protocol execution, each ui is formed as
ri · si and each mi (except m1) is formed as ri · xi · r−1

i−1,
which are also distributed as random elements of the group.
Thus, we obtain that P1 cannot tell the difference between the
simulated and real protocol execution with a non-negligible
probability.

8.8 Secure two-party bit decomposition in the malicious
model

Finally, we describe our last, bit decomposition, proto-
col secure in the malicious model. Our starting point
was the bit composition protocol in the semi-honest set-
ting from [11], which we adapted to the two-party set-
ting and provide its two-party version in the “Appendix”.

On input of an �-bit encrypted integer a, the protocol
performs bit decomposition of k least significant bits of
a.

The main idea of BitDec protocol for the parties to com-
pute Enc(c) = Enc(2�+k + a − r), where r is a random
(� + κ)-bit value and the k least significant bits of r are
available to the parties in encrypted form, and decrypt c. The
plaintext lets each party to compute the bits of 2�+κ + a − r
while providing statistical hiding of a. The random r is cre-
ated in the same way as in the truncation protocol, where
the parties separately create k least significant bits of r and
choose a single random r ′ for the remaining bits of r . The
parties then call a protocol calledBitAdd that takes k least sig-
nificant (plaintext) bits of c and k least significant (encrypted)
bits of r and performs addition of the values provided by their
bitwise representation (i.e., addition of two k-bit quantities).
BitAdd outputs k encrypted bits of the sum, which are used
as the output of the BitDec protocol.

In ourMalBitDec protocol we need to employ a stronger
version of BitAdd, which was provided for the semi-honest
setting.We, however, notice thatBitAdd is composed entirely
of addition and multiplication operations [11] and we can
obtain a protocol secure in the malicious model, which we
denote by MalBitAdd, by employing protocol MalMul in
place of ordinary multiplications. Adding two integers x and
y in bitwise form involves computing sum and carry bits si
and ei , which can be sequentially computed as e0 = x0 ∧
y0 = x0 · y0, s0 = x0 ⊕ y0 = x0 + y0 − 2e0, and ei =
(xi ∧ yi ) ∨ ((xi ⊕ yi ) ∧ ei−1) = xi · yi + (xi ⊕ yi )ei−1, si =
xi + yi + ei−1 − 2ei for i ≥ 1. Bitwise addition protocol
[37] used to implement bit decomposition uses concurrent
execution to compute all bits of the sum (and carry bits)
using a smaller (than linear in the size of the input) number
of rounds, but still implements the formulas given above.
This will be relevant for our security proof.

Enc(xk−1), . . . ,Enc(x0) ← MalBitDec(Enc(a), �, k)

Public inputs includepublic key pk for a (2, 2)-thresholdPail-
lier encryption scheme and private inputs consist of shares
of the corresponding secret key.

1. For i ∈ [0, k − 1], each Pj chooses random bits r( j,i) ∈
{0, 1}, encrypts them as z( j,i) = Enc(r( j,i), ρ( j,i)),
and sends each z( j,i) to the other party. Pj also exe-
cutes PK12((r( j,i), ρ( j,i)), (z( j,i), 0, 1)) to prove that
each z( j,i) is well-formed.

2. The parties compute zi = Enc(ri ) = Enc(r(1,i) ⊕
r(2,i))) = Enc(r(1,i) + r(2,i) − 2r(1,i)r(2,i)) = z(1,i) ·
z(2,i) · (MalMul(z(1,i), z(2,i)))−2 for i ∈ [0, k − 1].

3. Each Pj chooses random r ′
j ∈ [0, 2�+κ−k − 1], encrypts

it as z′j = Enc(r ′
j , ρ

′
j ), and sends it to the other party. Pj

also executes RangeProof((r ′
j , ρ

′
i )(0, 2

�+κ−k − 1, z′j ))
to prove that z′j is well-formed.
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4. Each party locally computes Enc(r) = Enc(2k(r ′
1 +

r ′
2)+∑k−1

i=0 ri · 2i ) = (z′1 · z′2)2
k ∏k−1

i=0 z
2i
i and Enc(c) =

Enc(2�+κ+1 + a − r) = Enc(2�+κ+1, 0) · Enc(a) ·
Enc(r)−1.

5. The parties jointly decrypt Enc(c) to learn c.
6. Theparties compute andoutput (Enc(xk−1),…,Enc(x0))

= MalBitAdd((ck−1, . . . , c0), (Enc(rk−1), . . .,Enc(r0))),
where c0, . . ., ck−1 are k least significant bits of c.

Our protocol closely follows the logic of the semi-honest
solution. We employ zero-knowledge proofs to verify that
the computationwas performed correctly and building blocks
secure in the stronger security model. We show security of
this protocol as follows:

Theorem 8 Assuming semantic security of the homomor-
phic encryption and security of the building blocks, Mal-
BitDec protocol is secure in the presence of a malicious
adversary in the hybrid model with ideal decryption.

Proof We prove security of MalBitDec based on Defini-
tion 2. We construct Pj ’s view in the ideal model by building
simulator S j , and we show it is indistinguishable form view
of Pj in protocol’s real execution. We assume without loss
of generality that P1 is malicious, and we build simulator
S1. We can use similar proof in case P2 is malicious because
MalBitDec is symmetric.

In step 1, S1 receives z(1,i)’s, and acts as a verifier for
PK12’s (extracting r(1,i)’s). S1 then chooses a random num-
ber c̃ ∈ {0, 1}�+κ and computes

1. Enc(ri ) = Enc(xi − c̃i ) = Enc(xi ) · Enc(−c̃i ) for i ∈
[2, k − 1], where c̃i denotes i th least significant bit of c̃,

2. Enc(r1) = Enc(x1 − c̃1 − c̃0r0) (if k > 1) as Enc(x1) ·
Enc(c1) · Enc(r0)−1 if c̃0 = 1 and Enc(x1) · Enc(c1)
otherwise, and

3. Enc(r0) = Enc(x0 ⊕ c̃0) as Enc(x0) · Enc(0) if c̃0 = 0
and Enc(1 − x0) = Enc(x0)−1 · Enc(1) otherwise

using fresh randomness for each newly formed encryption.
Note that as a result of this computation the value that ri
takes may no longer be a bit (e.g., when xi = 0 and c̃i = 1
for i ≥ 2). For each i ∈ [0, k − 1], if r(1,i) = 0, S1
computes z(2,i) = Enc(ri ) · Enc(0) and otherwise com-
putes z(2,i) = Enc(1 − ri ) = Enc(ri )−1 · Enc(1) (using
a freshly formed encryption of 0 or 1). S1 then sends each
z(2,i) to P1 and simulates PK12’s as a prover. During step
2, S1 uses MalMul’s simulator to produce P1’s view. In step
3, S1 follows the protocol similar to P2’s computation: it
receives z′1, verifies P1’s RangeProof (extracting r ′

1), pro-
duces r ′

2 and its corresponding ciphertext, and acts as a
prover in RangeProof. S1 skips step 4. In step 5, S1 out-
puts c̃ + 2�+κ − 2kr ′

1 as decrypted value. As a result, in the

consecutive step MalBitAdd will be called on k least sig-
nificant bits of c̃ and k ciphertexts Enc(ri ). In step 6, S1
uses MalBitAdd’s simulator to interact with P1, but intro-
duces changes in the simulation. In particular, S1 forces
each encrypted carry bit (for i ≥ 1) to become 0 as fol-
lows. The computation inMalBitAdd consists of computing
pi = xi + yi − 2xi yi and gi = xi yi for each bit i of inputs
x and y, followed by computing carry bits as e0 = g0 and
ei = gi + pi ei−1 for i ∈ [1, k−1] (the sum bits are computed
from xi ’s, yi ’s and ei ’s as previously described). Because one
of the arguments toMalBitAdd is given in the plaintext form,
computation of pi ’s and gi ’s is local and beyond the simu-
lator’s control. Computing each ei (for i ≥ 1), however,
involves a call to MalMul, where we instruct S1 to deviate
from MalMul’s simulation. In particular, when S1 simulates
P1’s view during a call to MalMul(Enc(pi ),Enc(ei−1)),
instead of setting z2 to Enc(pi ei−1)

−1Enc(ei−1)
w−r1 in

step 2 as MalMul’s simulation prescribes, S1 sets z2 to
Enc(gi )Enc(ei−1)

w−r1 . This will cause the product to eval-
uate to −gi and consequently result in ei being 0 for each
i ≥ 1. (We note that ei ’s are not computed sequentially in
BitAdd to reduce the number of rounds, but this does not
affect how we instruct the simulator to work.) The remaining
multiplications are simulated according to MalMul’s simu-
lator.

Now we show that P1’s output at the end of simula-
tion is computed correctly. During the simulation, S1 sets
each r2,i such that r(2,i) = ri ⊕ r(1,i) and consequently
ri = r(1,i)⊕r(2,i), where ri = xi − c̃i for i ≥ 2, r0 = x0⊕ c̃0,
and r1 = x1 − c̃1 − c̃0r0. Then because k least signif-
icant bits of c = c̃ + 2�+κ − 2kr ′

1 correspond to k least
significant bits c̃,MalBitAdd is going to be called on argu-
ments (c̃k−1, . . ., c̃0) and (Enc(rk−1), . . .,Enc(r0)). As part
of MalBitAddP1 then computes the carry bit e0 as c̃0r0,
while all other carry bits ei for i ≥ 1 will be forced to
be 0 (by changing what MalMul returns) as described ear-
lier. Recall that the output bits ofMalBitAdd (and the output
bits of BitDec are computed as s0 = c̃0 + r0 − 2e0 and
si = c̃i + ri + ei−1 − 2ei . Because all ei = 0 for i ≥ 1, but
e0 can be set to 1, we obtain that

1. s0 = c̃0 + r0 − 2c̃0r0 = c̃0 ⊕ r0 = x0 as required;
2. s1 is supposed to be computed as s1 = c̃1+r1+e0−2e1,

but we instead have s1 = c̃1 + r1 + e0. Recall, however,
that r1 was set to r1 = x1−c̃1−c̃0r0 = x1−c̃1−e0,which
gives us s1 = c̃1 + x1 − c̃1 − e0 + e0 = x1 as required;

3. si for i ≥ 2 becomes c̃i + ri as a result of S1’s sim-
ulation. Because ri was set to xi − c̃i , we obtain that
si = c̃i + xi − c̃i = xi as required as well.

The last piece that we wanted to demonstrate is that P1 will
compute each ri according to the value that S1 expects even
when ri is not a bit (which would be a violation of the real
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Table 1 Complexity of building blocks in the two-party setting

Protocol Rounds Communication size Computation complexity

Client Server

RangeProof 1 6 log(H − L)C 5 log(H − L) 6 log(H − L)

PK12 1 4C 3 2

PKPK 1 2.5C 2 2

PKPM 1 4.5C 4 4

MalMul 2 13C + 2D 15 15

MalLT 4 (52.5 + 36(� + κ))C + 2D 43 + 33(� + κ) 43 + 33(� + κ)

MalTruncPR 5 (23k + 12(� + κ − k) + 2)C + (2k + 2)D 4 + 11(� + κ − k) + 22k 4 + 11(� + κ − k) + 22k

MalInv 2 18C + 2D 18 18

MalPreMul 6 44kC + 6kD 45k − 2 45k − 2

MalBitAdd 2 log k 13k log kC + 2k log kD k(15 log k + 2) k(15 log k + 2)

MalBitDec 2 log k + 4 ((13 log k + 23)k + 12(� + κ) − 11)C k(15 log k + 24) k(15 log k + 24)

+(2 log k + 2)kD +11(� + κ) − 10 +11(� + κ) − 9

protocol execution). During the simulation, r0 is always com-
puted as a bit, r1 may take values −1 and −2 (in addition to
0 and 1), and ri may take value −1 (in addition to 0 and 1).
S1 sets each r2,i as XOR of ri and r(1,i) using the formula
ri + r(1,i) − 2rir(1,i) (i.e., r(2,i) is either ri or 1 − ri based
on the value of the bit r(1,i)) and later P1 computes ri =
r(1,i) + r(2,i) −2r(1,i)r(2,i). The crucial fact that we are using
here is that ri ⊕r(1,i)⊕r(1,i) = ri for any value of ri as long as
r(1,i) is a bit. In other words, during the simulation r(2,i) = ri
and then ri = r(2,i) when r(1,i) = 0; and r(2,1) = 1 − ri and
then ri = 1− r(2,i) = 1− (1− ri ) = ri when r(1,i) = 1. We
conclude that P1 learns the correct (encrypted) output bits
x0, . . ., xk−1 as a result of this simulation.

To show that the view simulated by S1 is indistinguish-
able from P1’s view in the hybrid model, we need to show
the plaintext value the simulator produces in step 5 is indistin-
guishable from the value c in real execution (as the remaining
building blocks have been shown to guarantee indistinguisha-
bility and all encrypted values achieve indistinguishability as
well). Recall that in the real protocol execution c is formed
as 2�+κ+1 − r + x = 2�+κ+1 −2k(r ′

1 + r ′
2)−∑k−1

i=0 2
i ri + x ,

while in the simulation S1 outputs c = c̃ + 2�+k − 2kr ′
1.

Let c̃ = 2�+κ − 2kr ′
2 − ∑k−1

i=0 . Because no information
about r ′

2 and ri ’s is available to P1, c̃ in the simulation
and 2�+κ − 2kr ′

2 − ∑k−1
i=0 during real execution are distrib-

uted identically. We obtain that during the real execution P1
observes 2�+κ+1 − r + x , while during the simulation P1
observes 2�+κ+1−r . These two values are statistically indis-
tinguishable using statistical security parameter κ . Note that
we have to take the value of r ′

1 into account when forming
c during the simulation to ensure that c that the simulator
outputs falls in the correct range (according to P1’s knowl-
edge of r ′

1). Lastly, we note that both during the simulation
and real execution the computation aborts only when a mali-

cious party fails to correctly complete ZKPKs as the prover.
Therefore, simulated and real views are indistinguishable.

WithMalMul,MalLT, RangeProof,MalTruncPR,Mal-
Inv, MalPreMul, MalBitDec, and previously mentioned
prior work, we achieve security of the HMM and GMM pro-
tocols in the malicious model in the two-party setting. The
complexities of these protocols are provided in Table 1. In
Table 1, notation C denotes the ciphertext length in bits, and
D denotes the length of the auxiliary decryption information,
which when sent by one of the parties allows the other party
to decrypt a ciphertext. Other notations are parameters of the
protocols. Communication is measured in bits, and computa-
tion is measured in full size modulo exponentiations. We list
computational overhead incurred by each party separately,
with the smaller amount of work first (which can be carried
out by a client) followed by the larger amount of work (which
can be carried out by a server).

9 Conclusions

In this work, we treat the problem of privacy-preserving
Hidden Markov Models computation which is commonly
used for many applications including speaker recognition.
We develop provably secure techniques for HMM’s Viterbi
and GMM computation using floating-point arithmetic in
both two-party setting using homomorphic encryption and
multi-party setting using secret sharing. These settings cor-
respond to a variety of real-life situations and the solutions
were designed to minimize their overhead.

A significant part of this work is dedicated to new secure
protocols for floating-point operations in themaliciousmodel
in the two-party setting. To the best of our knowledge, this is
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the first time such protocols are offered in the literature. We
rigorously prove security of our protocols using simulation-
based proofs, which constitutes a distinct contribution of this
work.
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Appendix: Additional two-party protocols in the
semi-honest model

In this section, we provide four protocols: probabilistic
truncation TruncPR, inversion Inv, prefix multiplication
PreMul, and bit decomposition BitDec secure in the semi-
honest setting. All of these protocols have been modified
from their original versions to the two-party setting using
homomorphic encryption, but the structure of the computa-
tion remains unchanged. In all cases it is assumed that the
inputs are nonnegative integers.

We first describe TruncPr protocol adapted from its origi-
nal version in [10]. On input ofEnc(x), �, and k, the protocol
outputs Enc(y) = Enc(�x/2k� + b), where b is a (random)
bit.High-level descriptionof the protocol is given inSect. 8.5.

Enc(y) ← TruncPR(Enc(x), �, k)

Public inputs include public key pk = (g, N , θ) for a
(2, 2)-threshold Paillier encryption scheme and private inputs
consist of shares of the corresponding secret key.

1. Each Pi chooses r ′
i ∈ {0, 1}k−1 and r ′′

i ∈ {0, 1}�+κ−k−1

at random and sends to the other party a(i,1) = Enc(r ′
i )

and a(i,2) = Enc(r ′′
i ).

2. Each party computes Enc(r ′) = Enc(r ′
1 + r ′

2) =
Enc(r ′

1) · Enc(r ′
2) and Enc(r ′′) = Enc(r ′′

1 + r ′′
2 ) =

Enc(r ′′
1 ) · Enc(r ′′

2 ).
3. The parties compute Enc(c) = Enc(x + 2kr ′′ + r ′) =

Enc(x) · Enc(r ′′)2k · Enc(r ′) and decrypt c.
4. Each party locally computes c′ = c mod 2k and produces

Enc(y) = Enc((x − c′ + r ′) · (2k)−1) = (Enc(x) ·
Enc(c′)−1 · Enc(r ′))(2k )−1

as the output.

The above protocol assumes that k ≥ 2. When k = 1,
each Pi instead chooses r ′

i as a random bit in step 1, and
in step 2 the parties compute Enc(r ′) = Enc(r ′

1 ⊕ r ′
2) =

Enc(r ′
1) ·Enc(r ′

2) · (Mul(Enc(r ′
1),Enc(r

′
2)))

−2. The rest of
the protocol remains unaffected.

The second protocol describes two-party computation of
multiplicative inverse of x , where x is assumed to be a

nonzero element of the group. High-level description of this
protocol is given in Sect. 8.6.

Enc(y) ← Inv(Enc(x))

Public inputs include public key pk = (g, N , θ) for a
(2, 2)-threshold Paillier encryption scheme and private inputs
consist of shares of the corresponding secret key.

1. Each Pi chooses ri ∈ Z
∗
N , and sends to the other party

ai = Enc(ri ).
2. Each Pi locally computes Enc(r) = Enc(r1

+ r2) = Enc(r1) · Enc(r2).
3. The parties compute Enc(c) = Mul(Enc(x),Enc(r))

and decrypt c.
4. Each party locally computes Enc(y) = Enc(c−1r) =

(Enc(r))c
−1

as the output.

The next protocol that we illustrate is two-party prefix mul-
tiplication PreMul, which is based on multi-party PreMulC
from [10]. High-level description of this protocol is given in
Sect. 8.7.

Enc(y1), . . . ,Enc(yk) ← PreMul(Enc(x1), . . . ,Enc(xk))

Public inputs include public key pk = (g, N , θ) for a
(2, 2)-threshold Paillier encryption scheme and private inputs
consist of shares of the corresponding secret key.

1. Each Pj chooses random r( j,i), s( j,i) ∈ Z
∗
N for i ∈ [1, k],

computes z( j,i) = Enc(r( j,i)), z′( j,i) = Enc(s( j,i)), and
sends each z( j,i) and z′( j,i) to the other party.

2. Eachparty locally computes zi = Enc(ri ) = Enc(r(1,i)+
r(2,i)) = z(1,i)z(2,i) and z′i = Enc(si ) = Enc(s(1,i) +
s(2,i)) = z′(1,i)z

′
(2,i) for i ∈ [1, k].

3. The parties compute Enc(ui ) = Enc(ri · si ) =
Mul(zi , z′i ) for i ∈ [1, k] and decrypt each ui .

4. The parties compute Enc(vi ) = Enc(ri+1 · si ) =
Mul(zi+1, z′i ) for i ∈ [1, k − 1].

5. Each party setsEnc(w1) = z1 and computesEnc(wi ) =
Enc(vi−1 ·(ui−1)

−1) = Enc(vi−1)
(ui−1)

−1
for i ∈ [2, k].

6. Each party also locally computes Enc(ti ) = Enc(si ·
(ui )−1) = (zi )(ui )

−1
for i ∈ [1, k].

7. Theparties computeEnc(mi ) = Mul(Enc(wi ),Enc(xi ))
for i ∈ [1, k] and decrypt each mi .

8. Each party sets Enc(y1) = Enc(x1) and locally com-

putesEnc(yi ) = Enc(ti ·∏i
j=1m j ) = (Enc(ti ))

∏i
j=1 m j

for i ∈ [2, k] as the output.

The last protocol that we are going to describe here is bit
decomposition BitDec, which originally appeared in [11]
for the multi-party setting and modified it to work in our
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two-party setting based on homomorphic encryption.A high-
level description of the protocol can be found in Sect. 8.8.

Enc(xk−1), . . .,Enc(x0) ← BitDec(Enc(a), �, k)

Public inputs includepublic key pk for a (2, 2)-thresholdPail-
lier encryption scheme and private inputs consist of shares
of the corresponding secret key.

1. For i ∈ [0, k − 1], each Pj chooses a random bit r( j,i),
computes z( j,i) = Enc(r( j,i)), and sends each z( j,i) to
the other party.

2. The parties compute zi = Enc(ri ) = Enc(r(1,i) ⊕
r(2,i)) = Enc(r(1,i) +r(2,i) −2r(1,i)r(2,i)) = z(1,i) · z(2,i) ·
Mul(r(1,i), r(2,i))−2 for i ∈ [0, k − 1].

3. Each Pj chooses r ′
j ∈ {0, 1}�+κ−k at random, computes

z′j = Enc(r j ), and sends z′j to the other party.
4. Each party locally computes Enc(r) = Enc(2k(r ′

1 +
r ′
2)+

∑k−1
i=0 (2i ·ri )) = (z′1 ·z′2)2

k ∏k−1
i=0 z

2i
i andEnc(c) =

Enc(2�+κ + a − r) = Enc(2�+κ) · Enc(a) · Enc(r)−1.
5. The parties jointly decrypt Enc(c) to learn c.
6. Theparties compute andoutput (Enc(xk−1), . . .,Enc(x0))

= BitAdd((ck−1, . . ., c0), (Enc(rk−1), . . .,Enc(r0))),
where c0, . . ., ck−1 are k least significant bits of c.
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