Private Computation with Genomic Data for Genome-Wide Association and Linkage Studies

Ali Shahbazi, Fattaneh Bayatbabolghani, and Marina Blanton

Department of Computer Science and Engineering University of Notre Dame Computer Science and Engineering Department University at Buffalo, The State University of New York

3rd International Workshop on Genome Privacy and Security November 12, 2016

Motivation

- GWAS play a crucial role in medicine and the pharmaceutical industry
- We treat the problem of securing computation associated with GWAS and GWLS
\checkmark Hardy-Weinberg equilibrium (HWE)
\checkmark linkage disequilibrium (LD)
\checkmark Cochran-Armitage test for trend (CATT)
\checkmark Fisher test
- There is a desire to protect highly sensitive DNA data of users participating in these tests
- We choose a flexible framework for privately computing with genomic data
\checkmark secure joint computation by multiple entities
\checkmark secure computation outsourcing to a number of computational servers

Statistical Tests

- HWE
\checkmark is used to estimate the frequency of alleles in a population
\checkmark is typically performed using chi-squared test

$$
\chi^{2}=\sum_{i \in\{A A, A a, a a\}} \frac{\left(N_{i}-E_{i}\right)^{2}}{E_{i}}
$$

$\star E_{i}$'s represent expected values of the genotypes, defined as $E_{A A}=\left(N_{A}\right)^{2} /(4 N), E_{A a}=\left(N_{A} N_{a}\right) /(2 N)$, and $E_{a a}=\left(N_{a}\right)^{2} /(4 N)$

Statistical Tests

- LD
\checkmark occurs when genotypes at two different loci are not independent of each other
\checkmark is computed by chi-squared for the hypothesis of no disequilibrium

$$
\chi_{A, B}^{2}=\frac{2 N\left(D_{A B}\right)^{2}}{p_{A}\left(1-p_{A}\right) p_{B}\left(1-p_{B}\right)}=\frac{2 N\left(D_{A B}\right)^{2}}{p_{A} p_{a} p_{B} p_{b}}
$$

* $D_{A B}$ is called the coefficient of LD and can be computed as $D_{A B}=p_{A B}-p_{A} p_{B}$

Statistical Tests

- CATT
\checkmark is used to assess the presence of association between a variable with two different categories (cases and controls) and a variable with 3 different categories in application to GWAS

	Group 0	Group 1	Group 2	Total
Controls	N_{00}	N_{01}	N_{02}	R_{0}
Cases	N_{10}	N_{11}	N_{12}	R_{1}
Total	C_{0}	C_{1}	C_{2}	N

\checkmark represents a modification of chi-squared test

$$
\chi^{2}=\frac{\left(\sum_{i=0}^{2} w_{i}\left(N_{0 i} R_{1}-N_{1 i} R_{0}\right)\right)^{2}}{\frac{R_{0} R_{1}}{N}\left(\sum_{i=0}^{2} w_{i}^{2} C_{i}\left(N-C_{i}\right)-2 \sum_{i=0}^{1} \sum_{j=i+1}^{2} w_{i} w_{j} C_{i} C_{j}\right)}
$$

$\star w=\left(w_{0}, w_{1}, w_{2}\right)$ corresponds to predetermined weights

Statistical Tests

- Fisher test
\checkmark is used in the analysis of contingency tables similar to CATT to assess the presence of association between two categories of cases and controls and two groups of A and B alleles in application to GWAS and pharmaceutical drug tests

	A	B	Total
Controls	$N_{0 A}$	$N_{0 B}$	R_{0}
Cases	$N_{1 A}$	$N_{1 B}$	R_{1}
Total	C_{A}	C_{B}	N

\checkmark is more accurate than chi-squared tests when sample sizes are small

$$
p=\frac{R_{0}!\cdot R_{1}!\cdot C_{A}!\cdot C_{B}!}{N!\cdot N_{0 A}!\cdot N_{0 B}!\cdot N_{1 A}!\cdot N_{1 B}!}
$$

* controls correspond to category 0 and cases to category 1

Security Model

- We frame secure computation in a general setting where there are a number of input providers, a number of computational parties, and a number of output recipients
- These three sets of participants can be formed in an arbitrary way
- The focus of this work is on the semi-honest model. The techniques that we employ, however, can be extended to support the stronger malicious model as well using well-known results

Underlying Techniques

- We build solutions based on secret sharing
- (n, t) linear secret sharing:
\checkmark A secret s is divided into n pieces.
\checkmark No information will be learned regarding s from t or fewer shares.
\checkmark With $t+1$ or more shares, s can be reconstructed.
- We measure performance of secure computation in our framework in terms of interactive operations and rounds since local computation is very fast

Secure Hardy-Weinberg Equilibrium Computation

- We expand the HWE formula and χ^{2} is being compared to the threshold τ
- Because the division operation is significantly more expensive that integer multiplication in our framework, we can re-write the formula to replace divisions with multiplications

$$
\begin{aligned}
& \left(4 N \cdot\left[N_{A A}\right]-\left[N_{A}\right]^{2}\right)^{2}\left[N_{a}\right]^{2}+2\left(2 N \cdot\left[N_{A a}\right]-\left[N_{A}\right] \cdot\left[N_{a}\right]\right)^{2}\left[N_{A}\right] \cdot\left[N_{a}\right] \\
& +\left(4 N \cdot\left[N_{a a}\right]-\left[N_{a}\right]^{2}\right)^{2}\left[N_{A}\right]^{2} \leq 4 N \cdot \tau \cdot\left[N_{A}\right]^{2} \cdot\left[N_{a}\right]^{2}
\end{aligned}
$$

- This can be accomplished in $4 \ell+8$ interactive operations in 6 rounds, where ℓ is the bitlength of the values being compared in previous equation which is proportional to $\log (N)$

Secure Linkage Disequilibrium Computation

- We expand the LD formula and $\chi_{A, B}^{2}$ is being compared to the threshold τ
- We re-structure the computation to avoid the division operation

$$
2 N \cdot\left(N \cdot\left[N_{A B}\right]-\left[N_{A}\right] \cdot\left[N_{B}\right]\right)^{2} \leq \tau \cdot\left[N_{A}\right] \cdot\left[N_{a}\right] \cdot\left[N_{B}\right] \cdot\left[N_{b}\right]
$$

- This can be accomplished in $4 \ell+2$ interactive operations in 5 rounds

Secure Cochran-Armitage Test for Trend Computation

- We expand the CATT formula and χ^{2} is being compared to the threshold τ
- We re-structure the computation to avoid the division operation

$$
\begin{aligned}
& N \cdot\left(\left[w_{1}\right] \cdot\left(\left[N_{01}\right] \cdot R_{1}-\left[N_{11}\right] \cdot R_{0}\right)+\left[w_{2}\right] \cdot\left(\left[N_{02}\right] \cdot R_{1}\right.\right. \\
& \left.\left.-\left[N_{12}\right] \cdot R_{0}\right)\right)^{2} \leq R_{0} R_{1} \tau \cdot\left(\left[w_{1}\right]^{2} \cdot\left[C_{1}\right] \cdot\left(N-\left[C_{1}\right]\right)\right. \\
& \left.+\left[w_{2}\right]^{2} \cdot\left[C_{2}\right] \cdot\left(N-\left[C_{2}\right]\right)-2\left[w_{1}\right] \cdot\left[w_{2}\right] \cdot\left[C_{1}\right] \cdot\left[C_{2}\right]\right)
\end{aligned}
$$

- This can be accomplished in $4 \ell+6$ interactive operations in 5 rounds
- When the weights w_{1} and w_{2} are public and non-zero, evaluation of previous equation costs $4 \ell+2$ interactive operations in 4 rounds

Secure Fisher Test Computation

- We proceed with computing the logarithm of the p-value instead of directly implementing Fisher test equation
\checkmark to avoid working with values of excessive bitlength
\checkmark to replace the division operation with a very fast subtraction operation

$$
\begin{array}{r}
\log (p)=\log \left(R_{0}!\right)+\log \left(R_{1}!\right)+\log \left(C_{A}!\right)+\log \left(C_{B}!\right)-\log (N!) \\
-\log \left(N_{0 A}!\right)-\log \left(N_{0 B}!\right)-\log \left(N_{1 A}!\right)-\log \left(N_{1 B}!\right)
\end{array}
$$

Secure Fisher Test Computation

- We can simultaneously compute $\log \left(\left[N_{0 A}\right]!\right)$ and $\log \left(\left[N_{0 B}\right]\right.$! $)$ using one set of R_{0} comparisons. Therefore, oblivious computations of $\log \left(v_{A}!\right)$ and $\log \left(v_{b}!\right)$ for some private v_{A} and v_{B}

$$
\begin{aligned}
& {\left[v_{A}\right]=\left[v_{B}\right]=0 ;} \\
& \text { for } i=2, \ldots, R_{0}-1 \\
& \quad\left[c_{i}\right]=\operatorname{LTE}(i,[v]) ; \\
& \quad\left[v_{A}\right]=\left[v_{A}\right]+\left[c_{i}\right] \cdot \log (i) ; \\
& \quad\left[v_{B}\right]=\left[v_{B}\right]+\left(1-\left[c_{i}\right]\right) \cdot \log \left(R_{0}+1-i\right) ;
\end{aligned}
$$

- Our implementation of securely evaluating $\log (v!)$ for some private v proceeds similar to the computation of a table lookup with a private index
- Our solution has $O(N \log N)$ complexity and $O(\log N)$ round complexity

Performance Results

Test	N	Modulus				
		Number M of alleles				
		10	100	1,000	10,000	
HWE	200	98	0.042	0.321	3.21	32.5
	400	104	0.046	0.355	3.39	33.9
	800	110	0.047	0.361	3.64	36.3
	1600	116	0.051	0.374	3.87	38.9
LD	200	89	0.037	0.298	2.99	30.6
	400	94	0.040	0.313	3.08	31.9
	800	99	0.042	0.337	3.18	32.1
	1600	104	0.043	0.345	3.37	33.7

Performance Results

Test	N	Modulus size	Number M of alleles			
			10	100	1,000	10,000
CATT with private weights	200	86	0.036	0.297	2.92	29.5
	400	91	0.039	0.295	2.98	30.7
	800	96	0.040	0.319	3.02	31.3
	1600	101	0.045	0.348	3.23	32.6
CATT with public weights	200	86	0.035	0.291	2.86	29.1
	400	91	0.039	0.298	2.99	30.7
	800	96	0.039	0.308	3.07	31.5
	1600	101	0.041	0.340	3.27	32.7
Fisher	100	67	0.108	0.979	9.78	98.1
	200	68	0.217	2.09	20.9	N/A
	400	69	0.453	4.47	44.6	N/A

