
Secure Multi-Party Computation Tutorial

Fattaneh Bayatbabolghani∗ and Marina Blanton†

∗University of California, Berkeley
†University at Buffalo, The State University of New York

ACM Conference on Computer and Communications Security

October 2018

1

OutlineOutline

• Introduction

– motivation

– security definition

• Garbled circuit evaluation

– Yao’s protocol

– oblivious transfer and its extensions

– garbled circuit optimizations

– malicious adversary techniques

CCS 2018 SMC tutorial

2Fattaneh Bayatbabolghani and Marina Blanton

OutlineOutline

• Secret sharing

– Shamir secret sharing

– operations on shares

– malicious adversary techniques

• Compilers

– secure two-party compilers

– secure multi-party compilers

• Summary

CCS 2018 SMC tutorial

3Fattaneh Bayatbabolghani and Marina Blanton

Data PrivacyData Privacy

• Why do we talk about protecting data privacy?

CCS 2018 SMC tutorial

4Fattaneh Bayatbabolghani and Marina Blanton

Data PrivacyData Privacy

• Larger and larger volumes of data are being collected about individuals

– one’s shopping behavior, geo location and moving patterns, interests and
hobbies, exercise patterns, etc.

• Even intended analysis and use of data is scary, but it is also prone to abuse

– information about individuals collected by an entity can be legitimately
sold to others

– large datasets with sensitive information are an attractive target for
insider abuse

– data breaches are more common than what we know

CCS 2018 SMC tutorial

5Fattaneh Bayatbabolghani and Marina Blanton

Data ProtectionData Protection

• There are many different ways to protect private, proprietary, classified or
otherwise sensitive information

– this tutorial will cover some of such techniques

• Protection techniques include:

– computing on private data without revealing the data

– anonymous communication and authentication

– applications that provide anonymity (e-cash, voting, etc.)

CCS 2018 SMC tutorial

6Fattaneh Bayatbabolghani and Marina Blanton

Secure Multi-Party ComputationSecure Multi-Party Computation

• Secure multi-party computation allows two or more individuals to jointly
evaluate a function on their respective private data

– security guarantees allow for no unintended information leakage

– only output of the computation (and any information deduced from the
output and individual private input) can be known to a participant

CCS 2018 SMC tutorial

7Fattaneh Bayatbabolghani and Marina Blanton

Example Secure Two-Party ComputationExample Secure Two-Party Computation

• Two millionaires Alice and Bob would like to determine who is richer
without revealing their worth to each other

Alice Bob
private x private y

−→
←−
−→
←−
−→

output
x < y

CCS 2018 SMC tutorial

8Fattaneh Bayatbabolghani and Marina Blanton

Example Secure Multi-Party ComputationExample Secure Multi-Party Computation

• A number of local hospitals would like to jointly determine the most
effective treatment to a rare disease

outputhospital 2
private records
output

secure
computation

hospital 1
private records

output hospital 3
private records

CCS 2018 SMC tutorial

9Fattaneh Bayatbabolghani and Marina Blanton

Example Secure Multi-Party ComputationExample Secure Multi-Party Computation

• Many individuals would participate in electronic voting

−→

• Any computation that can be done with a trusted third party (TTP) can be
done without TTP

CCS 2018 SMC tutorial

10Fattaneh Bayatbabolghani and Marina Blanton

Secure Multi-Party ComputationSecure Multi-Party Computation

• Regardless of the setup, the same strong security guarantees are expected:

– suppose there is an ideal third party that the participants trust with their
data

– they send their data to TTP and receive the output

– then a multi-party protocol is secure if adversarial participants learn no
more information than in the case of ideal TTP

– this is formalized through a simulation paradigm

CCS 2018 SMC tutorial

11Fattaneh Bayatbabolghani and Marina Blanton

Security of SMCSecurity of SMC

• There are two standard ways of modeling participants in SMC

– a semi-honest participant complies with the prescribed computation, but
might attempt to learn additional information about other participants’
data from the messages it receives

• it is also called honest-but-curious or passive

– a malicious participant can arbitrarily deviate from the protocol’s
execution in the attempt to learn unauthorized information about other
participants’ data

• it is also called active

• There is a third type of adversarial model with covert participants who can
act maliciously, but do not wish to be caught

CCS 2018 SMC tutorial

12Fattaneh Bayatbabolghani and Marina Blanton

Security of SMC in the Semi-Honest ModelSecurity of SMC in the Semi-Honest Model

• We start modeling security using the semi-honest model

– Let n be the number of participants in secure computation

– An adversaryA can corrupt and control t < n of them

– A knows all information that the corrupt parties have and receive

– Security is modeled by building a simulator SA with access to the TTP
that producesA’s view indistinguishable from its view in real protocol
execution

• SA hasA’s information and TTP’s output

• it must simulate the view ofA and form outputs for all parties
correctly

CCS 2018 SMC tutorial

13Fattaneh Bayatbabolghani and Marina Blanton

The Real ModelThe Real Model

Alice Bob
private x private y

−→
←−
−→
←−
−→

protocol output protocol output

CCS 2018 SMC tutorial

14Fattaneh Bayatbabolghani and Marina Blanton

The Ideal ModelThe Ideal Model

Alice TTP Bob
private x private y−→

←−
−→
←−
−→

−→
←−
−→
←−
−→

protocol output protocol output

CCS 2018 SMC tutorial

15Fattaneh Bayatbabolghani and Marina Blanton

The Security DefinitionThe Security Definition

'

CCS 2018 SMC tutorial

16Fattaneh Bayatbabolghani and Marina Blanton

Security of SMC in the Semi-Honest ModelSecurity of SMC in the Semi-Honest Model

• Formal definition:

– Let parties P1, . . ., Pn engage in a protocol Π that computes function
f(in1, . . ., inn)→ (out1, . . ., outn), where ini ∈ {0,1}∗ and
outi ∈ {0,1}∗ denote the input and output of party Pi, respectively.

– Let VIEWΠ(Pi) denote the view of participant Pi during the execution
of protocol Π. That is, Pi’s view is formed by its input and internal
random coin tosses ri, as well as messages m1, . . .,mk passed between
the parties during protocol execution:

VIEWΠ(Pi) = (ini, ri,m1, . . .,mk).

– Let I = {Pi1, Pi2, . . ., Pit} denote a subset of the participants for
t < n and VIEWΠ(I) denote the combined view of participants in I
during the execution of protocol Π (i.e., the union of the views of the
participants in I).

CCS 2018 SMC tutorial

17Fattaneh Bayatbabolghani and Marina Blanton

Security of SMC in the Semi-Honest ModelSecurity of SMC in the Semi-Honest Model

• Formal definition (cont.):

– We say that protocol Π is t-private in the presence of semi-honest
adversaries if for each coalition of size at most t there exists a
probabilistic polynomial time simulator SI such that

SI(inI , f(in1, . . ., inn)) ≡ {VIEWΠ(I), outI},

where inI =
⋃
Pi∈I{ini}, outI =

⋃
Pi∈I{outi}, and ≡ denotes

computational or statistical indistinguishability.

• Computational indistinguishability of two distributions means that the
probability that they differ is negligible in the security parameter κ

– for statistical indistinguishability, the difference must be negligible in the
statistical security parameter

CCS 2018 SMC tutorial

18Fattaneh Bayatbabolghani and Marina Blanton

Security of SMC in the Malicious ModelSecurity of SMC in the Malicious Model

• In the malicious model we have the following definition:

– Let Π be a protocol that computes function
f(in1, . . ., inn)→ (out1, . . ., outn), with party Pi contributing input
ini ∈ {0,1}∗ and receiving output outi ∈ {0,1}∗

– LetA be an arbitrary algorithm with auxiliary input x and S be an
adversary/simulator in the ideal model

– Let REALΠ,A(x),I(in1, . . ., inn) denote the view of adversaryA
controlling parties in I together with the honest parties’ outputs after real
protocol Π execution

– Similarly, let IDEALf,S(x),I(in1, . . ., inn) denote the view of S and
outputs of honest parties after ideal execution of function f

CCS 2018 SMC tutorial

19Fattaneh Bayatbabolghani and Marina Blanton

Security of SMC in the Malicious ModelSecurity of SMC in the Malicious Model

• Formal definition (cont.):

– We say that Π t-securely computes f if for each coalition I of size at
most t, every probabilistic adversaryA in the real model, all
ini ∈ {0,1}∗ and x ∈ {0,1}∗, there is probabilistic S in the ideal
model that runs in time polynomial inA’s runtime and

{IDEALf,S(x),I(in1, . . ., inn)} ≡ {REALΠ,A(x),I(in1, . . ., inn)}

CCS 2018 SMC tutorial

20Fattaneh Bayatbabolghani and Marina Blanton

Secure Multi-Party ComputationSecure Multi-Party Computation

• The setting can be further generalized to allow for more general setups

• We can distinguish between three groups of participants

– input parties (data owners) contribute their private input into the
computation

– computational parties securely execute the computation on behalf of all
participants

– output parties (output recipients) receive output from the computational
parties at the end of the computation

• The groups can be arbitrarily overlapping

CCS 2018 SMC tutorial

21Fattaneh Bayatbabolghani and Marina Blanton

Secure Multi-Party ComputationSecure Multi-Party Computation

• The above setup allows for many interesting settings

– e.g., a large number of participating hospitals can choose a subset of
them to run the computation on behalf of all of them

– they can also employ external parties (cloud providers) for running the
computation

– the output can be delivered to a subset of them and/or to other interested
parties

• This setup also allows for secure computation outsourcing

– one or more clients securely outsource their computation to a number of
external cloud computing providers

CCS 2018 SMC tutorial

22Fattaneh Bayatbabolghani and Marina Blanton

Secure Multi-Party Computation TechniquesSecure Multi-Party Computation Techniques

• Garbled circuit evaluation

– two-party computation (n = 2)

• Linear secret sharing

– multi-party computation (n > 2)

• Homomorphic encryption

– two- or multi-party computation (n ≥ 2)

CCS 2018 SMC tutorial

23Fattaneh Bayatbabolghani and Marina Blanton

Garbled Circuit EvaluationGarbled Circuit Evaluation

• SMC based on garbled circuit evaluation involves two participants: circuit
garbler and circuit evaluator

• The function to be computed is represented as a Boolean circuit

– typically we’ll use binary (two input and one output bits) gates and
negation gates

– example:

. . .

. . .

xm ymx1 y1

CCS 2018 SMC tutorial

24Fattaneh Bayatbabolghani and Marina Blanton

Yao’s Protocol: Garbled Circuit EvaluationYao’s Protocol: Garbled Circuit Evaluation

• The garbler takes a Boolean circuit and associates two random labels
`0i , `

1
i ∈ {0,1}

κ with each circuit’s wire i

– `0i is associated with value 0 of the wire and `1i with value 1

– given `bi , it is not possible to determine what b is

[Y86] A. Yao, ”How to generate and exchange secrets,” 1986.

CCS 2018 SMC tutorial

25Fattaneh Bayatbabolghani and Marina Blanton

Yao’s Protocol: Garbled Circuit EvaluationYao’s Protocol: Garbled Circuit Evaluation

• The garbler also encodes each gate and sends it to the evaluator

– suppose a binary gate g has input wires i and j and output wire k

– the garbler uses encryption to enable recovery of `
g(bi,bj)
k given `bii and

`
bj
j

CCS 2018 SMC tutorial

26Fattaneh Bayatbabolghani and Marina Blanton

Yao’s Protocol: Garbled Circuit EvaluationYao’s Protocol: Garbled Circuit Evaluation

• The garbler sends the label corresponding to its own input bit

– the labels are random, so the evaluator does not learn what this bit is

CCS 2018 SMC tutorial

27Fattaneh Bayatbabolghani and Marina Blanton

Yao’s Protocol: Garbled Circuit EvaluationYao’s Protocol: Garbled Circuit Evaluation

• The evaluator engages in 1-out-of-2 oblivious transfer (OT) with the garbler
to obtain labels corresponding to its own input

– it allows the evaluator to retrieve one out of two labels for each of its
input wires, while the garbler learns nothing

CCS 2018 SMC tutorial

28Fattaneh Bayatbabolghani and Marina Blanton

Yao’s Protocol: Garbled Circuit EvaluationYao’s Protocol: Garbled Circuit Evaluation

• The evaluator obtains appropriate labels for the input wires and evaluates the
garbled circuit one gate at a time

– the evaluator sees labels, but doesn’t know their meaning

CCS 2018 SMC tutorial

29Fattaneh Bayatbabolghani and Marina Blanton

Yao’s Protocol: Garbled Circuit EvaluationYao’s Protocol: Garbled Circuit Evaluation

• At the end of the protocol execution, both parties, one of them, or an external
party can learn the output of the protocol execution

• Yao’s construction gives a constant-round protocol for secure computation of
any function in the semi-honest model

– the number of rounds does not depend on the number of inputs or the
size of the circuit

• The basic technique is secure in the presence of semi-honest garbler and
malicious evaluator

– it can be extended to be secure in the malicious model using additional
techniques

CCS 2018 SMC tutorial

30Fattaneh Bayatbabolghani and Marina Blanton

Oblivious TransferOblivious Transfer

• Oblivious Transfer is a secure two-party protocol, in which the sender holds
a number of inputs and the receiver’s obtains one of them based on its choice

– it is used extensively in garbled circuit evaluation

• at least one OT per input bit, typically an efficiency bottleneck

– it is also a common tool in other protocols

• Here we are interested in 1-out-of-2 OT, with the sender holding two inputs
a0 and a1 and the sender holding a bit b

• OT extension allows m (1-out-of-2) OTs to be realized using a constant
number of regular OT protocols with small additional overhead linear in m

CCS 2018 SMC tutorial

31Fattaneh Bayatbabolghani and Marina Blanton

Oblivious TransferOblivious Transfer

• The literature contains many realizations of OT and OT extensions including
[NP01, IKNP03, ALSZ13, ALSZ15]

[NP01] M. Naor and B. Pinkas, “Efficient oblivious transfer protocols,” 2001.

[IKNP03] Y. Ishai, J. Kilian, K. Nissim, E. Petrank, “Extending oblivious transfers
efficiently,” 2003.

[ALSZ13] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner, “More efficient oblivious
transfer and extensions for faster secure computation,” 2013.

[ALSZ15] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner, “More efficient oblivious

transfer extensions with security for malicious adversaries,” 2015.

CCS 2018 SMC tutorial

32Fattaneh Bayatbabolghani and Marina Blanton

Naor-Pinkas OTNaor-Pinkas OT

• Naor-Pinkas OT [NP01] is an efficient construction secure in the malicious
model

– sender S inputs two strings `0 and `1 and receiver R inputs a bit b

– common input consists of group G of prime order q, its generator g, and
a random element C of G (chosen by S)

– after the protocol, R learns `b and S learns nothing

S R
`0 and `1 b

←−
−→

`b

CCS 2018 SMC tutorial

33Fattaneh Bayatbabolghani and Marina Blanton

Naor-Pinkas OTNaor-Pinkas OT

• S chooses random r ∈ Zq and computes Cr and gr

r, Cr, and gr

CCS 2018 SMC tutorial

34Fattaneh Bayatbabolghani and Marina Blanton

Naor-Pinkas OTNaor-Pinkas OT

• Receiver R:

– chooses random k ∈ Z∗q

– sets public keys PKb = gk and PK1−b = C/PKb

– sends PK0 to S

k, PKb, and PK1−b

←−

PK0

CCS 2018 SMC tutorial

35Fattaneh Bayatbabolghani and Marina Blanton

Naor-Pinkas OTNaor-Pinkas OT

• Consequently, sender S

– computes (PK0)r and (PK1)r = Cr/(PK0)r

– sends to R gr and two encryptions E0 = H((PK0)r,0)⊕ `0 and
E1 = H((PK1)r,1)⊕ `1

– here H is a hash function (modeled as a random oracle)

(PK0)r, (PK1)r, E0, and E1

−→

gr, E0, and E1

CCS 2018 SMC tutorial

36Fattaneh Bayatbabolghani and Marina Blanton

Naor-Pinkas OTNaor-Pinkas OT

• R computes H((gr)k) = H((PKb)
r) and uses it to recover `b

`b

CCS 2018 SMC tutorial

37Fattaneh Bayatbabolghani and Marina Blanton

ALSZ13 OT Extension (Semi-Honest)ALSZ13 OT Extension (Semi-Honest)

• Asharov-Lindell-Schneider-Zohner OT extension trades public-key
operations for symmetric-key operations and communication

• Let sender S hold private binary strings (`0i , `
1
i) for i ∈ [1,m] and receiver

R hold m private bits b = b1 . . . bm

• As output, R receives (`b11 , . . . , `
bm
m) and S learns nothing

S R
(`0i , `

1
i) for i ∈ [1,m] b = b1 . . . bm

←−
−→

(`b11 , . . . , `
bm
m)

CCS 2018 SMC tutorial

38Fattaneh Bayatbabolghani and Marina Blanton

ALSZ13 OT Extension (Semi-Honest)ALSZ13 OT Extension (Semi-Honest)

• S chooses a random string s = s1 . . . sκ ∈ {0,1}κ, where κ is a
symmetric-key security parameter

s

CCS 2018 SMC tutorial

39Fattaneh Bayatbabolghani and Marina Blanton

ALSZ13 OT Extension (Semi-Honest)ALSZ13 OT Extension (Semi-Honest)

• R chooses κ pairs of random κ-bit strings (k0
i , k

1
i) for i = 1, . . . , κ

(k0
i , k

1
i) for i = 1, . . . , κ

CCS 2018 SMC tutorial

40Fattaneh Bayatbabolghani and Marina Blanton

ALSZ13 OT Extension (Semi-Honest)ALSZ13 OT Extension (Semi-Honest)

• S and R perform κ OTs secure against semi-honest parties, with their roles
reversed

– R enters (k0
i , k

1
i) into the ith OT

– S inputs si

– S learns ksii

s (k0
i , k

1
i) for i = 1, . . . , κ

←−
−→

(ks1
1 , . . . , k

sκ
κ)

CCS 2018 SMC tutorial

41Fattaneh Bayatbabolghani and Marina Blanton

ALSZ13 OT Extension (Semi-Honest)ALSZ13 OT Extension (Semi-Honest)

• Let ti = PRG(k0
i) for i = 1, . . . , κ and PRG : {0,1}κ → {0,1}m

• Let T = [t1| . . . |tκ] denote the m× κ matrix with its ith column being ti

and jth row being tj

CCS 2018 SMC tutorial

42Fattaneh Bayatbabolghani and Marina Blanton

ALSZ13 OT Extension (Semi-Honest)ALSZ13 OT Extension (Semi-Honest)

• R computes ti = PRG(k0
i), ui = PRG(k0

i)⊕ PRG(k1
i)⊕ b for

i = 1, . . . , κ and sends each ui to S

ti and ui for i = 1, . . . , κ

←−

ui for i = 1, . . . , κ

CCS 2018 SMC tutorial

43Fattaneh Bayatbabolghani and Marina Blanton

ALSZ13 OT Extension (Semi-Honest)ALSZ13 OT Extension (Semi-Honest)

• S defines qi = (si · ui)⊕ PRG(ksii) = (si · b)⊕ ti for i = 1, . . . , κ

• Let Q = [q1| . . . |qκ] denote the m× κ matrix with its ith column being
qi and jth row being qj where i = 1, . . . , τ and j = 1, . . . ,m

– i.e., qi = (si · b)⊕ ti and qj = (bj · s)⊕ tj

CCS 2018 SMC tutorial

44Fattaneh Bayatbabolghani and Marina Blanton

ALSZ13 OT Extension (Semi-Honest)ALSZ13 OT Extension (Semi-Honest)

• S sends to R (w0
i , w

1
i) for i = 1, . . . ,m, where w0

i = `0i ⊕H(i,qi) and
w1
i = `1i ⊕H(i,qi ⊕ s)

(w0
i , w

1
i) for i = 1, . . . ,m

−→

(w0
i , w

1
i) for i = 1, . . . ,m

CCS 2018 SMC tutorial

45Fattaneh Bayatbabolghani and Marina Blanton

ALSZ13 OT Extension (Semi-Honest)ALSZ13 OT Extension (Semi-Honest)

• R computes `bii = w
bi
i ⊕H(i, ti) for i = 1, . . . ,m

(`b11 , . . . , `
bm
m)

CCS 2018 SMC tutorial

46Fattaneh Bayatbabolghani and Marina Blanton

ALSZ15 OT Extension (Malicious)ALSZ15 OT Extension (Malicious)

• The semi-honest OT extension above can be made secure in the presence of
malicious adversaries with a few changes:

– R chooses sets b′ = b||r for a random r ∈ {0,1}κ and uses b′ in place
of b

– s is of size τ = κ+ ρ, where ρ is a statistical security parameter

– this changes the number of based OTs from κ to τ and matrix
dimensions from m× κ to (m+ κ)× τ

– consistency check is required to enforce that the same b′ is used to form
each ui

CCS 2018 SMC tutorial

47Fattaneh Bayatbabolghani and Marina Blanton

ALSZ15 OT Extension (Malicious)ALSZ15 OT Extension (Malicious)

• Consistency check cross-checks information about each ui against uj’s
information for each (i, j) pair

– for every pair (i, j) ∈ [1, τ]2, R computes four values:

h
(0,0)
(i,j) = H(PRG(k0

i)⊕PRG(k0
j)), h(0,1)

(i,j) = H(PRG(k0
i)⊕PRG(k1

j))

h
(1,0)
(i,j) = H(PRG(k1

i)⊕PRG(k0
j)), h(1,1)

(i,j) = H(PRG(k1
i)⊕PRG(k1

j))

and sends them to S

– for every pair (i, j) ∈ [1, τ]2, S checks that

• h
(si,sj)
(i,j) = H(PRG(ksii)⊕ PRG(k

sj
j))

• h
(si,sj)
(i,j) = H(PRG(ksii)⊕ PRG(k

sj
j)⊕ ui ⊕ uj)

• ui 6= uj

CCS 2018 SMC tutorial

48Fattaneh Bayatbabolghani and Marina Blanton

Garbled Circuit Evaluation OptimizationsGarbled Circuit Evaluation Optimizations

• Multiple optimizations that improve performance of garbled circuit
evaluation are known

– the “free XOR” technique which allows XOR gates to be evaluated very
cheaply

– the garbled row reduction technique which reduces the size of garbled
gates

– the half-gates optimization which further reduces the size of garbled
gates

– performing garbling in a way to permit the use of fixed-key (hardware
accelerated) AES which greatly improves the speed of garbling and
evaluation

CCS 2018 SMC tutorial

49Fattaneh Bayatbabolghani and Marina Blanton

Free XORFree XOR

• Garbler has a global secret R and construct labels as follows:
`0a `0b `0e = `0a ⊕ `0b
`1a = `0a ⊕R `1b = `0b ⊕R `1e = `0e ⊕R

`0a ⊕ `0b = `0a ⊕ `0b ⊕R⊕R = `1a ⊕ `1b

`1a ⊕ `0b = `0a ⊕ `0b ⊕R = `0a ⊕ `1b

• No ciphertexts, encryption, or communication is needed for XOR gates!
[KS08] V. Kolesnikov and T. Schneider, “Improved garbled circuit: Free XOR gates and

applications,” 2008.

CCS 2018 SMC tutorial

50Fattaneh Bayatbabolghani and Marina Blanton

Garbled Row Reduction (1)Garbled Row Reduction (1)

• The first garbled row reduction optimization reduces the size of a garbled
gate from 4 to 3 ciphertexts

• The garbler generates the output labels such that the first entry of the garbled
table is derived deterministically and no longer needs to be sent

`0e = Dec`0a,`0b
(0)

• This lowers communication, but adds more computational to the garbler side

• It is also compatible with free XOR

[NPS99] M. Naor, B. Pinkas, and R. Sumner. ”Privacy preserving auctions and mechanism

design,” 1999.

CCS 2018 SMC tutorial

51Fattaneh Bayatbabolghani and Marina Blanton

Garbled Row Reduction (2)Garbled Row Reduction (2)

• The second garbled row reduction optimization reduces the size of a garbled
gate from 4 to 2 ciphertexts

• The evaluator uses polynomial interpolation over a quadratic curve

• The output label is encoded as the y value on the polynomial at point 0

• As an example for AND gate

k1 = Dec`0a,`0b
(0), k2 = Dec`0a,`1b

(0)

k3 = Dec`1a,`0b
(0), k4 = Dec`1a,`1b

(0)

[PSSW09] B. Pinkas, T. Schneider, N. Smart, and S. Williams, “Secure two-party

computation is practical,” 2009.

CCS 2018 SMC tutorial

52Fattaneh Bayatbabolghani and Marina Blanton

Garbled Row Reduction (2)Garbled Row Reduction (2)

• One point on the polynomial is revealed in the usual way and two more (the
ones at x = 5 and x = 6) are included in the garbled gate

• There are two different quadratic polynomials P and Q to consider

– P and Q are designed to intersect exactly in the two points included in
the garbled gate

– in the Case of AND gate, three points on P are
(Dec`0a,`0b

(0),Dec`1a,`0b
(0),Dec`0a,`1b

(0)) and three points on Q are

(Dec`1a,`1b
(0), Q(5), Q(6))(with respect to their y-value)

• This is not compatible with free XOR!

CCS 2018 SMC tutorial

53Fattaneh Bayatbabolghani and Marina Blanton

Garbled Row Reduction (2)Garbled Row Reduction (2)

CCS 2018 SMC tutorial

54Fattaneh Bayatbabolghani and Marina Blanton

Half Gates OptimizationHalf Gates Optimization

• Half-gates is the first optimization technique that simultaneously

– requires only two ciphertexts per garbled AND gate

– is compatible with the “free XOR” optimization

• It relies on the fact that

a ∧ b = (a ∧ (b⊕ r))⊕ (a ∧ r)

where r is a random value chosen by the garbler

• The value of b⊕ r is revealed to the evaluator

[ZRE15] S. Zahur, M. Rosulek, and D. Evans, “Two halves make a whole,” 2015.

CCS 2018 SMC tutorial

55Fattaneh Bayatbabolghani and Marina Blanton

Half Gates OptimizationHalf Gates Optimization

• If the green rows are equal to 0 using garbled row reduction, then there are
only two ciphertexts are transmit

• Half gates and garbled row reduction techniques reduce bandwidth
associated with transmitting garbled gates

CCS 2018 SMC tutorial

56Fattaneh Bayatbabolghani and Marina Blanton

Using Fixed-Key BlockcipherUsing Fixed-Key Blockcipher

• This optimization modifies how garbled gates are constructed to use
fixed-key AES encryption instead of hash functions

• AES hardware implementations are widely available on commodity
hardware and allow for significant computation speedup

• This technique is compatible with the “free XOR” and row reduction
techniques

[BHKR13] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway, “Efficient garbling

from a fixed-key blockcipher,” 2013.

CCS 2018 SMC tutorial

57Fattaneh Bayatbabolghani and Marina Blanton

Garbled Circuit Evaluation (Malicious)Garbled Circuit Evaluation (Malicious)

• Yao’s garbled circuit evaluation is not secure in the presence of a malicious
garbler

– there is the need to enforce correct circuit construction and several
solutions exist [GMW91], [GMW87], [LP07], [SS11], [L13]

– we focus on cut-and-choose approaches [LP07], [SS11], [L13]

[GMW91] O. Goldreich, S. Micali, and A. Wigderson, “Proofs that yield nothing but their
validity or all languages in NP have zero-knowledge proof systems,” 1991.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental game-or-a
completeness theorem for protocols with honest majority,” 1987.

[LP07] Y. Lindell and B. Pinkas, “An efficient protocol for secure two-party computation in
the presence of malicious adversaries,” 2007.

[SS11] A. Shelat and C. Shen, “Two-output secure computation with malicious
adversaries,” 2011.

[L13] Y. Lindell, “Fast cut-and-choose-based protocols for malicious and covert

adversaries,” 2013.

CCS 2018 SMC tutorial

58Fattaneh Bayatbabolghani and Marina Blanton

Cut-and-ChooseCut-and-Choose

• The garbler generates s independent garblings of a circuit C and opens the
circuits of the evaluator’s choice

CCS 2018 SMC tutorial

59Fattaneh Bayatbabolghani and Marina Blanton

Cut-and-ChooseCut-and-Choose

• The garbler generates s independently garbled versions of circuit C

• The evaluator asks the garbler to open a number of circuits of its choice and
garbler reveals the randomness/keys

• The evaluator verifies correctness of the opened circuits

• The parties run OT/OT extension to retrieve the labels corresponding to the
evaluator’s input for the unopened circuits

• The garbler sends the labels corresponding its own input for the unopened
circuits

• The evaluator evaluates the unopened circuits, and returns the majority
output

CCS 2018 SMC tutorial

60Fattaneh Bayatbabolghani and Marina Blanton

Garbled Circuit Evaluation (Malicious) [LP07]Garbled Circuit Evaluation (Malicious) [LP07]

• Lindell-Pinkas solution proposed the use of cut-and-choose

• By opening a half of the garbled circuits and evaluating the other half, output
is incorrect with probability at most 2−0.311s

CCS 2018 SMC tutorial

61Fattaneh Bayatbabolghani and Marina Blanton

Garbled Circuit Evaluation (Malicious) [SS11]Garbled Circuit Evaluation (Malicious) [SS11]

• Shelat-Shen construction used the cut-and-choose approach and proposes
novel defence mechanisms for input consistency, selective failure, and
output authentication

• It showed that if the garbler opens 60% of the constructed circuits instead
50%, the error decreases from 2−0.311s to 2−0.32s

– to achieve the error of 2−40, we need approximately 125 circuits instead
of 128

CCS 2018 SMC tutorial

62Fattaneh Bayatbabolghani and Marina Blanton

Garbled Circuit Evaluation (Malicious) [L13]Garbled Circuit Evaluation (Malicious) [L13]

• How many circuits needed to be garbled to ensure correct output?

– previously, for error probability of 2−40, 125 circuits were needed

– this is a heavy computational overhead compared to the semi-honest
solution

• Lindell proposed an optimized cut-and-choose solution that required only s
circuits with some small additional overhead to achieve error of 2−s

CCS 2018 SMC tutorial

63Fattaneh Bayatbabolghani and Marina Blanton

Garbled Circuit Evaluation (Malicious) [L13]Garbled Circuit Evaluation (Malicious) [L13]

• Why do we need the majority of the circuits to be correct?

– an incorrect circuit may compute the desired function if the evaluator’s
input meets some condition and otherwise compute garbage

– if the evaluator aborts, it means the garbler knows that the evaluator’s
input does not meet the condition

– if the evaluator does not abort, it means the garbler knows that the
evaluator’s input meets the condition

– we must enforce that most evaluated circuits are correct with
overwhelming probability

CCS 2018 SMC tutorial

64Fattaneh Bayatbabolghani and Marina Blanton

Garbled Circuit Evaluation (Malicious) [L13]Garbled Circuit Evaluation (Malicious) [L13]

• Even if all opened circuits out of s are correct and all unopened circuits are
incorrect, the error probability is still bounded by 2−s

• How is it possible?

– both parties run small additional secure computation

– if the evaluator receives two different outputs in two different circuits,
the additional secure computation allows him to learn the garbler’s input

– in this case, the evaluator can compute the original function f by himself
because it knows both inputs

– the garbler does not know which case happened

CCS 2018 SMC tutorial

65Fattaneh Bayatbabolghani and Marina Blanton

Garbled Circuit Evaluation (Malicious)Garbled Circuit Evaluation (Malicious)

• The cut-and-choose technique alone does not provide full security

• Additional attacks:

– input consistency

– selective failure

– output authentication

CCS 2018 SMC tutorial

66Fattaneh Bayatbabolghani and Marina Blanton

Input ConsistencyInput Consistency

• When multiple circuits are being evaluated in cut-and-choose, a malicious
garbler can provide inconsistent inputs to different evaluation circuits

– after obtaining the output, the garbler can extract information about the
evaluator’s input

• Defenses:

– equality checker [MF06]

– input commitment [LP07]

– pseudorandom synthesizer [LP11]

– malleable claw-free collections [SS11]

[MF06] P. Mohassel and M. Franklin, “Efficiency tradeoffs for malicious two-party
computation,” 2006.

[LP11] Y. Lindell and B. Pinkas, “Secure two-party computation via cut-and-choose

oblivious transfer,” 2011.

CCS 2018 SMC tutorial

67Fattaneh Bayatbabolghani and Marina Blanton

Selective FailureSelective Failure

• A malicious garbler can also use inconsistent labels during garbling and later
during OT

• The evaluator’s input can be inferred from whether or not the protocol
completes

• Defenses:

– random input replacement: input bit b is replaced ρ random bits bi
subject to b = b1 ⊕ b2 ⊕ . . .⊕ bρ [LP07]

– committing OT [K08] [SS11]

– combining OT and the cut-and-choose steps into one protocol [LP11]

[K08] M. Kiraz, “Secure and fair two-party computation,” 2008.

CCS 2018 SMC tutorial

68Fattaneh Bayatbabolghani and Marina Blanton

Output AuthenticationOutput Authentication

• In many cases, both the garbler and evaluator receive outputs from secure
function evaluation, i.e., f(x, y) = (f1(x, y), f2(x, y))

• A malicious evaluator may claim an arbitrary value to be the generator’s
output coming from circuit evaluation

• Defenses:

– verifying authenticity of the garbler’s output by modifying the function
as f(x, y) = (f1(x, y)⊕ c, f2(x, y)) and computing its MAC [LP07]

– using zero knowledge proofs [K08]

– using a signature-based solution [SS11]

CCS 2018 SMC tutorial

69Fattaneh Bayatbabolghani and Marina Blanton

SMC based on Secret SharingSMC based on Secret Sharing

• An alternative technique is to use threshold linear secret sharing for secure
multi-party computation

– (n, t)-threshold secret sharing allows secret v to be secret-shared among
n parties such that:

• no coalition of t or fewer parties can recover any information about v

• t+ 1 or more shares can be used to efficiently reconstruct v

– information-theoretic security (i.e., independent of security parameters)
is achieved

CCS 2018 SMC tutorial

70Fattaneh Bayatbabolghani and Marina Blanton

Shamir’s (n, t)-Threshold SchemeShamir’s (n, t)-Threshold Scheme

• Given n points on the plane (x1, y1), . . . , (xn, yn) where all xis are
distinct, there exists an unique polynomial f of degree ≤ n− 1 such that
f(xi) = yi for i = 1, . . . , n

– f can be determined using Lagrange interpolation

• This also holds in a finite field, e.g., in Zp where p is prime

[S79] A,. Shamir, “How to share a secret,” 1979.

CCS 2018 SMC tutorial

71Fattaneh Bayatbabolghani and Marina Blanton

Shamir’s (n, t)-Threshold SchemeShamir’s (n, t)-Threshold Scheme

• Shamir secret sharing works as follows

– suppose we use finite field Zp for a prime p

– choose prime p of sufficient size to represent all values

– any private value v is represented as an element in Zp

– to create shares, choose polynomial
f(x) = a0 + a1x+ a2x

2 + · · ·+ atx
t mod p, where a1, . . . , at

are random and a0 = v

– let [v] secret shared v and [v]i = (i, f(i)) represent the share
distributed to the ith party for i ∈ [1, n]

CCS 2018 SMC tutorial

72Fattaneh Bayatbabolghani and Marina Blanton

Shamir’s (n, t)-Threshold SchemeShamir’s (n, t)-Threshold Scheme

CCS 2018 SMC tutorial

73Fattaneh Bayatbabolghani and Marina Blanton

Shamir’s (n, t)-Threshold SchemeShamir’s (n, t)-Threshold Scheme

• The secret v can be reconstructed from every subset of t+ 1 or more shares
(xi, yi) using Langrange interpolation

f(x) =
t+1∑
i=1

yi

t+1∏
j=1,j 6=i

x− xj
xi − xj

mod p

v = f(0) =
t+1∑
i=1

yi

t+1∏
j=1,j 6=i

−xj
xi − xj

mod p

• Any t or fewer shares do not leak any information about v

CCS 2018 SMC tutorial

74Fattaneh Bayatbabolghani and Marina Blanton

SMC based on Shamir Secret SharingSMC based on Shamir Secret Sharing

• Function evaluation is normally expressed using composition of elementary
operations

– functions represented in terms of additions/subtractions and
multiplications are called arithmetic circuits

• Performance of any function in this framework is measured in terms of

– the number of elementary interactive operations

– the number of sequential interactive operations or rounds

CCS 2018 SMC tutorial

75Fattaneh Bayatbabolghani and Marina Blanton

Addition and Subtraction OperationsAddition and Subtraction Operations

• Shamir’s secret sharing is a linear secret sharing scheme

– any linear combination of secret shared values can be computed directly
on the shares

• Example: addition

– let f1(x) = v1 + a1x+ a2x
2 + . . .+ atx

t and
f2(x) = v2 + a′1x+ a′2x

2 + . . .+ a′tx
t

– then g(x) = f1(x) + f2(x) =

v1 + v2 + (a1 + a′1)x+ (a2 + a′2)x2 + . . .+ (at + a′t)x
t

– this means that any party can compute its share of v1 + v2 as
[v1]i + [v2]i for each i

– subtraction is performed in a similar way

CCS 2018 SMC tutorial

76Fattaneh Bayatbabolghani and Marina Blanton

Multiplication OperationMultiplication Operation

• Example: scalar multiplication

– we can multiply secret-shared v by known integer c by directly
multiplying each share by c

– if f(x) = v + a1x+ a2x
2 + . . .+ atx

t, then
g(x) = c · f(x) = c · v+ (c · a1)x+ (c · a2)x2 + . . .+ (c · at)xt

– [c · v]i = c[v]i for each i

• What about multiplication of two secret values?

CCS 2018 SMC tutorial

77Fattaneh Bayatbabolghani and Marina Blanton

Multiplication OperationMultiplication Operation

• To multiply [v1] and [v2], each party could locally multiply its shares

– the product of their representation as f1(x) and f2(x) is

g(x) = f1(x) · f2(x) = v1 · v2 + λ1x+ λ2x
2 + . . .+ λ2tX

2t

– the polynomials are no longer of degree t, but rather of degree 2t

– reduction of the polynomial’s degree is needed

CCS 2018 SMC tutorial

78Fattaneh Bayatbabolghani and Marina Blanton

Multiplication OperationMultiplication Operation

• We can write

where A is (2t+ 1)× (2t+ 1) matrix and is defined as aij = ij−1

– A is non-singular and has inverse A−1

– let the first row of A−1 be [γ0, γ1, . . . , γ2t]

[GRR98] R. Gennaro, M. Rabin, and T. Rabin, “Simplified VSS and fast-track multiparty

computations with applications to threshold cryptography,” 1998.

CCS 2018 SMC tutorial

79Fattaneh Bayatbabolghani and Marina Blanton

Multiplication OperationMultiplication Operation

• The inverse equation implies that
v1 · v2 = g(0)γ0 + g(1)γ1 + . . .+ g(2t)γ2t

• Every player i chooses a random polynomial hi(x) of degree t such that
hi(0) = g(i)

• Let H(x) be defined as
∑2t
i=0 γihi(x), where H(0) = v1 · v2

– this dictates that 2t < n

• Each player i distributes shares (j, hi(j)) to other players

– now each player j can compute its own share of v1 · v2 as (j,H(j))

• Polynomial H(x) is of degree t and it is random

CCS 2018 SMC tutorial

80Fattaneh Bayatbabolghani and Marina Blanton

Multiplication OperationMultiplication Operation

CCS 2018 SMC tutorial

81Fattaneh Bayatbabolghani and Marina Blanton

SMC based on Secret SharingSMC based on Secret Sharing

• SMC based on secret sharing supports the flexible setup with three groups of
participants:

– each data owner secret-shares its private input among the computational
parties prior to the computation

– the computational parties evaluate the function on secret-shared data

– the computational parties communicate their shares of the result to
output recipients who locally reconstruct the output

CCS 2018 SMC tutorial

82Fattaneh Bayatbabolghani and Marina Blanton

SMC based on Secret SharingSMC based on Secret Sharing

• A number of techniques are available to strengthen the security guarantees to
hold in the malicious model

– traditionally security has been guaranteed by using verifiable secret
sharing techniques

• each multiplication is followed by a zero-knowledge proof of
knowledge that the operation was carried out correctly

• additional zero-knowledge proofs may be used to prove correct
sharing of input or other additional operations

– more recently computation employs a different structure

CCS 2018 SMC tutorial

83Fattaneh Bayatbabolghani and Marina Blanton

Damgård-Nielsen Construction (Malicious)Damgård-Nielsen Construction (Malicious)

• Damgård-Nielsen construction works for both semi-honest and malicious
models with honest majority

• Multiplication is performed using multiplication triples

– multiplication triples are of the form (a, b, c) with c = ab

– each of a, b, and c is represented using uniformly random t-sharings

– triples are generated during the preprocessing phase

– they are consumed during the online phase

[DN07] I. Damgård and J. Nielsen, “Scalable and unconditionally secure multiparty

computation,” 2007.

CCS 2018 SMC tutorial

84Fattaneh Bayatbabolghani and Marina Blanton

Damgård-Nielsen Construction (Malicious)Damgård-Nielsen Construction (Malicious)

• To generate a triple

1. the parties compute a random value and its two sharings: t-sharing [r]

and 2t-sharing 〈R〉

2. all locally parties compute 〈D〉 = [a][b] + 〈R〉 on their own shares
where shares of random a and b are given

3. all parties open D which is a uniformly random 2t-sharing

4. all parties compute [c] = D − [r] with known D and random t-sharing
r (which equals to R)

5. each party has its own share of (a, b, c)

CCS 2018 SMC tutorial

85Fattaneh Bayatbabolghani and Marina Blanton

Damgård-Nielsen Construction (Malicious)Damgård-Nielsen Construction (Malicious)

• During online phase, multiplication of secret-shared [x] and [y] is as
follows:

1. choose a fresh triple [a], [b], [c]

2. all parties compute [α] = [x] + [a] and [β] = [y] + [b]

3. all parties open α and β

4. all parties compute [xy] = −αβ + α[y] + β[x]− [c]

CCS 2018 SMC tutorial

86Fattaneh Bayatbabolghani and Marina Blanton

Damgård-Nielsen Construction (Malicious)Damgård-Nielsen Construction (Malicious)

• Inputs are entered using pre-computed random t-sharings [r] known to one
party

– to enter input x, the input owner computes δ = x+ r and broadcasts δ
to others

– all players compute [x] = δ − [r]

• To make it secure in the presence of malicious parties

– small portions of the protocol utilize verifiable secret sharing (VSS) for
generating random elements

– conflict resolution algorithm is used to enforce consistent sharings

• many values are verified in a batch

CCS 2018 SMC tutorial

87Fattaneh Bayatbabolghani and Marina Blanton

SMC based on Secret Sharing (Malicious)SMC based on Secret Sharing (Malicious)

• SPDZ is another construction that works for malicious models with up to
n− 1 corrupted parties

– with no majority, the rules of the game change

– if at least one party misbehaves or aborts, the computation cannot
continue

– we use (n, n− 1) secret sharing

• party i holds ai such that a = a1 + a2 + · · ·+ an

[DPSZ12] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, “Multiparty computation from

somewhat homomorphic encryption,” 2012.

CCS 2018 SMC tutorial

88Fattaneh Bayatbabolghani and Marina Blanton

SPDZ (Malicious)SPDZ (Malicious)

• SPDZ uses the same idea high-level structure as [DN07]

– computation is divided into the preprocessing and online phases

– all the expensive public-key operations are performed during
preprocessing

– the online phase is very efficient

• Multiplication also uses precomputed triples

– this time they are generated using somewhat homomorphic encryption
(SHE)

– zero-knowledge proofs of plaintext knowledge (ZKPoPKs) are used to
ensure that the parties encrypt data as they should using SHE

CCS 2018 SMC tutorial

89Fattaneh Bayatbabolghani and Marina Blanton

SPDZ (Malicious)SPDZ (Malicious)

• Computation proceeds on a different representation

– each private a is secret-shared as

〈a〉 = (δ, (a1, . . . , an), (γ(a)1, . . . , γ(a)n))

– here γ(a) = α(a+ δ) is a MAC on a

– α is a global private (secret-shared) value (MAC key)

– each δ is public

– each party i holds ai and γ(a)i and each operation updates both values

CCS 2018 SMC tutorial

90Fattaneh Bayatbabolghani and Marina Blanton

SPDZ (Malicious)SPDZ (Malicious)

• SPDZ online computation

– inputs are entered using pre-generated random values

– additions are local

– multiplications consume multiplication triples and are partially open to
verify correctness

– at the end of the computation, the parties open the MAC key α

– they verify that the MACs on the output (secret-shared) values match the
values

• compute randomized difference, open it, and check for non-zero
values

– if any issues are detected, abort; otherwise, open the results

CCS 2018 SMC tutorial

91Fattaneh Bayatbabolghani and Marina Blanton

SPDZ Followup WorkSPDZ Followup Work

• SPDZ is attractive because of the strong security guarantees and fast online
computation

• A number of improved results followed

– improvements to the offline phase

– reusability of the MAC key

– lightweight protocol for covert adversaries

[DKL+13] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. Smart, “Practical

covertly secure MPC for dishonest majorityor: breaking the SPDZ limits,” 2013.

CCS 2018 SMC tutorial

92Fattaneh Bayatbabolghani and Marina Blanton

Compilers for Secure Two-Party ComputationCompilers for Secure Two-Party Computation

Compiler PL AND gate BW Adapted by
Fairplay Java 30 gates/sec 900Bps

FastGC Java 96K gates/sec 2.8MBps
CBMC-GC,
PCF, SCVM

ObliVM-GC Java 670K gates/sec 19.6MBps
ObliVM,
GraphSc

GraphSC Java
580K gates/sec 16MBps
per pair of cores per pair of cores

JustGarble
C

11M gates/sec 315MBps TinyGarble
AES-NI

The table is adapted from ObliVM

JustGarble only provides garbling/evaluation (not an end-to-end system)

CCS 2018 SMC tutorial

93Fattaneh Bayatbabolghani and Marina Blanton

Compilers for Secure Multi-Party ComputationCompilers for Secure Multi-Party Computation

Compiler No. parties Parallelism Functionality
Sharemind 3 arrays non-int arithmetic

VIFF ≥ 3 interactive op varying precision

PICCO ≥ 3
loops, arrays, non-int arithmetic,

and user-specified varying precision

SPDZ ≥ 3 user-specified
non-int arithmetic,

non-arithmetic

• The table is adapted from PICCO

[SPDZ] T. Araki, A. Barak, J. Furukawa, M. Keller, Y. Lindell, K. Ohara, and H. Tsuchida,

“Generalizing the SPDZ Compiler for Other Protocols,” 2018.

CCS 2018 SMC tutorial

94Fattaneh Bayatbabolghani and Marina Blanton

Summary of SMC TechniquesSummary of SMC Techniques

• The two types of SMC techniques described so far can be used to evaluate
any function securely

– depending on the computation, one might be preferred over the other

• A large number of custom protocols for specific functions also exist

– example: private set intersection

– these can combine the above techniques or use custom approaches

– the goal of custom protocols is to outperform general solutions

CCS 2018 SMC tutorial

95Fattaneh Bayatbabolghani and Marina Blanton

