Secure Multi-Party Computation Tutorial

Fattaneh Bayatbabolghani* and Marina Blanton[†]

*University of California, Berkeley [†]University at Buffalo, The State University of New York

ACM Conference on Computer and Communications Security

October 2018

Outline

- Introduction
 - motivation
 - security definition
- Garbled circuit evaluation
 - Yao's protocol
 - oblivious transfer and its extensions
 - garbled circuit optimizations
 - malicious adversary techniques

Outline

- Secret sharing
 - Shamir secret sharing
 - operations on shares
 - malicious adversary techniques
- Compilers
 - secure two-party compilers
 - secure multi-party compilers
- Summary

Data Privacy

- Larger and larger volumes of data are being collected about individuals
 - one's shopping behavior, geo location and moving patterns, interests and hobbies, exercise patterns, etc.
- Even intended analysis and use of data is scary, but it is also prone to abuse
 - information about individuals collected by an entity can be legitimately sold to others
 - large datasets with sensitive information are an attractive target for insider abuse
 - data breaches are more common than what we know

Data Protection

- There are many different ways to protect private, proprietary, classified or otherwise sensitive information
 - this tutorial will cover some of such techniques
- Protection techniques include:
 - computing on private data without revealing the data
 - anonymous communication and authentication
 - applications that provide anonymity (e-cash, voting, etc.)

Secure Multi-Party Computation

- Secure multi-party computation allows two or more individuals to jointly evaluate a function on their respective private data
 - security guarantees allow for no unintended information leakage
 - only output of the computation (and any information deduced from the output and individual private input) can be known to a participant

Example Secure Two-Party Computation

• Two millionaires Alice and Bob would like to determine who is richer without revealing their worth to each other

Alice private x

output x < y

- SMC tutorial

Fattaneh Bayatbabolghani and Marina Blanton

Example Secure Multi-Party Computation

• A number of local hospitals would like to jointly determine the most effective treatment to a rare disease

Example Secure Multi-Party Computation

• Many individuals would participate in electronic voting

• Any computation that can be done with a trusted third party (TTP) can be done without TTP

Secure Multi-Party Computation

- Regardless of the setup, the same strong security guarantees are expected:
 - suppose there is an ideal third party that the participants trust with their data
 - they send their data to TTP and receive the output
 - then a multi-party protocol is secure if adversarial participants learn no more information than in the case of ideal TTP
 - this is formalized through a simulation paradigm

Security of SMC

- There are two standard ways of modeling participants in SMC
 - a semi-honest participant complies with the prescribed computation, but might attempt to learn additional information about other participants' data from the messages it receives
 - it is also called honest-but-curious or passive
 - a malicious participant can arbitrarily deviate from the protocol's execution in the attempt to learn unauthorized information about other participants' data
 - it is also called active
- There is a third type of adversarial model with covert participants who can act maliciously, but do not wish to be caught

Security of SMC in the Semi-Honest Model

- We start modeling security using the semi-honest model
 - Let n be the number of participants in secure computation
 - An adversary \mathcal{A} can corrupt and control t < n of them
 - \mathcal{A} knows all information that the corrupt parties have and receive
 - Security is modeled by building a simulator S_A with access to the TTP that produces A's view indistinguishable from its view in real protocol execution
 - S_A has A's information and TTP's output
 - it must simulate the view of \mathcal{A} and form outputs for all parties correctly

Security of SMC in the Semi-Honest Model

- Formal definition:
 - Let parties P_1, \ldots, P_n engage in a protocol Π that computes function $f(in_1, \ldots, in_n) \rightarrow (out_1, \ldots, out_n)$, where $in_i \in \{0, 1\}^*$ and $out_i \in \{0, 1\}^*$ denote the input and output of party P_i , respectively.
 - Let $VIEW_{\Pi}(P_i)$ denote the view of participant P_i during the execution of protocol Π . That is, P_i 's view is formed by its input and internal random coin tosses r_i , as well as messages m_1, \ldots, m_k passed between the parties during protocol execution:

 $\operatorname{VIEW}_{\Pi}(P_i) = (\operatorname{in}_i, r_i, m_1, \dots, m_k).$

- Let $I = \{P_{i_1}, P_{i_2}, \dots, P_{i_t}\}$ denote a subset of the participants for t < n and $VIEW_{\prod}(I)$ denote the combined view of participants in I during the execution of protocol \prod (i.e., the union of the views of the participants in I).

CCS 2018

Security of SMC in the Semi-Honest Model

- Formal definition (cont.):
 - We say that protocol Π is *t*-private in the presence of semi-honest adversaries if for each coalition of size at most *t* there exists a probabilistic polynomial time simulator S_I such that

 $S_I(\operatorname{in}_I, f(\operatorname{in}_1, \ldots, \operatorname{in}_n)) \equiv \{\operatorname{VIEW}_{\Pi}(I), \operatorname{out}_I\},\$

where $in_I = \bigcup_{P_i \in I} \{in_i\}$, $out_I = \bigcup_{P_i \in I} \{out_i\}$, and \equiv denotes computational or statistical indistinguishability.

- Computational indistinguishability of two distributions means that the probability that they differ is negligible in the security parameter κ
 - for statistical indistinguishability, the difference must be negligible in the statistical security parameter

Security of SMC in the Malicious Model

- In the malicious model we have the following definition:
 - Let Π be a protocol that computes function
 f(in₁,...,in_n) → (out₁,...,out_n), with party P_i contributing input
 in_i ∈ {0, 1}* and receiving output out_i ∈ {0, 1}*
 - Let \mathcal{A} be an arbitrary algorithm with auxiliary input x and S be an adversary/simulator in the ideal model
 - Let $\operatorname{REAL}_{\Pi,\mathcal{A}(x),I}(\operatorname{in}_1,\ldots,\operatorname{in}_n)$ denote the view of adversary \mathcal{A} controlling parties in I together with the honest parties' outputs after real protocol Π execution
 - Similarly, let $IDEAL_{f,S(x),I}(in_1, ..., in_n)$ denote the view of S and outputs of honest parties after ideal execution of function f

Security of SMC in the Malicious Model

- Formal definition (cont.):
 - We say that ∏ t-securely computes f if for each coalition I of size at most t, every probabilistic adversary A in the real model, all in_i ∈ {0, 1}* and x ∈ {0, 1}*, there is probabilistic S in the ideal model that runs in time polynomial in A's runtime and

 ${\rm [IDEAL}_{f,S(x),I}({\rm in}_1,\ldots,{\rm in}_n)\} \equiv {\rm [REAL}_{\Pi,\mathcal{A}(x),I}({\rm in}_1,\ldots,{\rm in}_n)\}$

CCS 2018

Secure Multi-Party Computation

- The setting can be further generalized to allow for more general setups
- We can distinguish between three groups of participants
 - input parties (data owners) contribute their private input into the computation
 - computational parties securely execute the computation on behalf of all participants
 - output parties (output recipients) receive output from the computational parties at the end of the computation
- The groups can be arbitrarily overlapping

Secure Multi-Party Computation

- The above setup allows for many interesting settings
 - e.g., a large number of participating hospitals can choose a subset of them to run the computation on behalf of all of them
 - they can also employ external parties (cloud providers) for running the computation
 - the output can be delivered to a subset of them and/or to other interested parties
- This setup also allows for secure computation outsourcing
 - one or more clients securely outsource their computation to a number of external cloud computing providers

Secure Multi-Party Computation Techniques

- Garbled circuit evaluation
 - two-party computation (n = 2)
- Linear secret sharing
 - multi-party computation (n > 2)
- Homomorphic encryption
 - two- or multi-party computation $(n \ge 2)$

Garbled Circuit Evaluation

- SMC based on garbled circuit evaluation involves two participants: circuit garbler and circuit evaluator
- The function to be computed is represented as a Boolean circuit
 - typically we'll use binary (two input and one output bits) gates and negation gates
 - example:

- The garbler takes a Boolean circuit and associates two random labels $\ell_i^0, \ell_i^1 \in \{0, 1\}^{\kappa}$ with each circuit's wire *i*
 - ℓ_i^0 is associated with value 0 of the wire and ℓ_i^1 with value 1
 - given ℓ_i^b , it is not possible to determine what b is

[Y86] A. Yao, "How to generate and exchange secrets," 1986.

- The garbler also encodes each gate and sends it to the evaluator
 - suppose a binary gate g has input wires i and j and output wire k
 - the garbler uses encryption to enable recovery of $\ell_k^{g(b_i,b_j)}$ given $\ell_i^{b_i}$ and $\ell_j^{b_j}$

- The garbler sends the label corresponding to its own input bit
 - the labels are random, so the evaluator does not learn what this bit is

Fattaneh Bayatbabolghani and Marina Blanton

- The evaluator engages in 1-out-of-2 oblivious transfer (OT) with the garbler to obtain labels corresponding to its own input
 - it allows the evaluator to retrieve one out of two labels for each of its input wires, while the garbler learns nothing

CCS 2018

Fattaneh Bayatbabolghani and Marina Blanton

- The evaluator obtains appropriate labels for the input wires and evaluates the garbled circuit one gate at a time
 - the evaluator sees labels, but doesn't know their meaning

- At the end of the protocol execution, both parties, one of them, or an external party can learn the output of the protocol execution
- Yao's construction gives a constant-round protocol for secure computation of any function in the semi-honest model
 - the number of rounds does not depend on the number of inputs or the size of the circuit
- The basic technique is secure in the presence of semi-honest garbler and malicious evaluator
 - it can be extended to be secure in the malicious model using additional techniques

Oblivious Transfer

- Oblivious Transfer is a secure two-party protocol, in which the sender holds a number of inputs and the receiver's obtains one of them based on its choice
 - it is used extensively in garbled circuit evaluation
 - at least one OT per input bit, typically an efficiency bottleneck
 - it is also a common tool in other protocols
- Here we are interested in 1-out-of-2 OT, with the sender holding two inputs a_0 and a_1 and the sender holding a bit b
- OT extension allows m (1-out-of-2) OTs to be realized using a constant number of regular OT protocols with small additional overhead linear in m

Oblivious Transfer

• The literature contains many realizations of OT and OT extensions including [NP01, IKNP03, ALSZ13, ALSZ15]

[NP01] M. Naor and B. Pinkas, "Efficient oblivious transfer protocols," 2001.

[IKNP03] Y. Ishai, J. Kilian, K. Nissim, E. Petrank, "Extending oblivious transfers efficiently," 2003.

[ALSZ13] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner, "More efficient oblivious transfer and extensions for faster secure computation," 2013.

[ALSZ15] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner, "More efficient oblivious transfer extensions with security for malicious adversaries," 2015.

Naor-Pinkas OT

- Naor-Pinkas OT [NP01] is an efficient construction secure in the malicious model
 - sender S inputs two strings ℓ_0 and ℓ_1 and receiver R inputs a bit b
 - common input consists of group \mathbb{G} of prime order q, its generator g, and a random element C of \mathbb{G} (chosen by S)
 - after the protocol, R learns ℓ_b and S learns nothing

Fattaneh Bayatbabolghani and Marina Blanton

Naor-Pinkas OT

- Receiver R:
 - chooses random $k \in \mathbb{Z}_q^*$
 - sets public keys $PK_b = g^k$ and $PK_{1-b} = C/PK_b$
 - sends PK_0 to S

 $k, PK_b, and PK_{1-b}$

Naor-Pinkas OT

• Consequently, sender S

CCS 2018

- computes $(PK_0)^r$ and $(PK_1)^r = C^r / (PK_0)^r$
- sends to R g^r and two encryptions $E_0 = H((PK_0)^r, 0) \oplus \ell_0$ and $E_1 = H((PK_1)^r, 1) \oplus \ell_1$
- here H is a hash function (modeled as a random oracle)

```
(PK_0)^r, (PK_1)^r, E_0, and E_1
```


Naor-Pinkas OT

• R computes $H((g^r)^k) = H((PK_b)^r)$ and uses it to recover ℓ_b

- Asharov-Lindell-Schneider-Zohner OT extension trades public-key operations for symmetric-key operations and communication
- Let sender S hold private binary strings (ℓ_i^0, ℓ_i^1) for $i \in [1, m]$ and receiver R hold m private bits $\mathbf{b} = b_1 \dots b_m$
- As output, R receives $(\ell_1^{b_1}, \ldots, \ell_m^{b_m})$ and S learns nothing

• S chooses a random string $s = s_1 \dots s_{\kappa} \in \{0, 1\}^{\kappa}$, where κ is a symmetric-key security parameter

CCS 2018

• R chooses κ pairs of random κ -bit strings (k_i^0, k_i^1) for $i = 1, \ldots, \kappa$

Fattaneh Bayatbabolghani and Marina Blanton

- S and R perform κ OTs secure against semi-honest parties, with their roles reversed
 - R enters (k_i^0, k_i^1) into the *i*th OT
 - S inputs s_i
 - S learns $k_i^{s_i}$

CCS 2018

Fattaneh Bayatbabolghani and Marina Blanton

• Let
$$\mathbf{t}^i = \mathsf{PRG}(k_i^0)$$
 for $i = 1, \dots, \kappa$ and $\mathsf{PRG} : \{0, 1\}^{\kappa} \to \{0, 1\}^m$

 Let T = [t¹|...|t^κ] denote the m × κ matrix with its *i*th column being tⁱ and *j*th row being t_j

SMC tutorial

Fattaneh Bayatbabolghani and Marina Blanton

ALSZ13 OT Extension (Semi-Honest) • R computes $\mathbf{t}^i = \mathsf{PRG}(k_i^0), \mathbf{u}^i = \mathsf{PRG}(k_i^0) \oplus \mathsf{PRG}(k_i^1) \oplus \mathbf{b}$ for $i = 1, \ldots, \kappa$ and sends each \mathbf{u}^i to S \mathbf{t}^i and \mathbf{u}^i for $i = 1, \ldots, \kappa$ \mathbf{u}^i for $i = 1, \ldots, \kappa$

Fattaneh Bayatbabolghani and Marina Blanton

- S defines $\mathbf{q}^i = (s_i \cdot \mathbf{u}^i) \oplus \mathsf{PRG}(k_i^{s_i}) = (s_i \cdot \mathbf{b}) \oplus \mathbf{t}^i$ for $i = 1, \dots, \kappa$
- Let $Q = [\mathbf{q}^1 | \dots | \mathbf{q}^{\kappa}]$ denote the $m \times \kappa$ matrix with its *i*th column being \mathbf{q}^i and *j*th row being \mathbf{q}_j where $i = 1, \dots, \tau$ and $j = 1, \dots, m$

- i.e., $\mathbf{q}^i = (s_i \cdot \mathbf{b}) \oplus \mathbf{t}^i$ and $\mathbf{q}_j = (b_j \cdot \mathbf{s}) \oplus t_j$

• S sends to R (w_i^0, w_i^1) for i = 1, ..., m, where $w_i^0 = \ell_i^0 \oplus H(i, \mathbf{q}_i)$ and $w_i^1 = \ell_i^1 \oplus H(i, \mathbf{q}_i \oplus \mathbf{s})$

• R computes
$$\ell_i^{b_i} = w_i^{b_i} \oplus H(i, \mathbf{t}_i)$$
 for $i = 1, \dots, m$

ALSZ15 OT Extension (Malicious)

- The semi-honest OT extension above can be made secure in the presence of malicious adversaries with a few changes:
 - R chooses sets $\mathbf{b}' = \mathbf{b} || \mathbf{r}$ for a random $\mathbf{r} \in \{0, 1\}^{\kappa}$ and uses \mathbf{b}' in place of \mathbf{b}
 - s is of size $\tau = \kappa + \rho$, where ρ is a statistical security parameter
 - this changes the number of based OTs from κ to τ and matrix dimensions from $m \times \kappa$ to $(m + \kappa) \times \tau$
 - consistency check is required to enforce that the same b' is used to form each \mathbf{u}^i

ALSZ15 OT Extension (Malicious)

• Consistency check cross-checks information about each u^i against u^j 's information for each (i, j) pair

- for every pair $(i, j) \in [1, \tau]^2$, R computes four values:

$$h_{(i,j)}^{(0,0)} = H(\mathsf{PRG}(k_i^0) \oplus \mathsf{PRG}(k_j^0)), \ h_{(i,j)}^{(0,1)} = H(\mathsf{PRG}(k_i^0) \oplus \mathsf{PRG}(k_j^1))$$

$$h_{(i,j)}^{(1,0)} = H(\mathsf{PRG}(k_i^1) \oplus \mathsf{PRG}(k_j^0)), \ h_{(i,j)}^{(1,1)} = H(\mathsf{PRG}(k_i^1) \oplus \mathsf{PRG}(k_j^1))$$

and sends them to S

- for every pair
$$(i, j) \in [1, \tau]^2$$
, S checks that
• $h_{(i,j)}^{(s_i,s_j)} = H(\mathsf{PRG}(k_i^{s_i}) \oplus \mathsf{PRG}(k_j^{s_j}))$

•
$$h_{(i,j)}^{(\overline{s}_i,\overline{s}_j)} = H(\mathsf{PRG}(k_i^{s_i}) \oplus \mathsf{PRG}(k_j^{s_j}) \oplus \mathbf{u}^i \oplus \mathbf{u}^j)$$

• $\mathbf{u}^i \neq \mathbf{u}^j$

CCS 2018

Garbled Circuit Evaluation Optimizations

- Multiple optimizations that improve performance of garbled circuit evaluation are known
 - the "free XOR" technique which allows XOR gates to be evaluated very cheaply
 - the garbled row reduction technique which reduces the size of garbled gates
 - the half-gates optimization which further reduces the size of garbled gates
 - performing garbling in a way to permit the use of fixed-key (hardware accelerated) AES which greatly improves the speed of garbling and evaluation

Free XOR

 $\bullet\,$ Garbler has a global secret R and construct labels as follows:

$$\ell_{a}^{0} \qquad \ell_{b}^{0} \qquad \ell_{e}^{0} = \ell_{a}^{0} \oplus \ell_{b}^{0}$$

$$\ell_{a}^{1} = \ell_{a}^{0} \oplus \mathbf{R} \qquad \ell_{b}^{1} = \ell_{b}^{0} \oplus \mathbf{R} \qquad \ell_{e}^{1} = \ell_{e}^{0} \oplus \mathbf{R}$$

$$\ell_{a}^{0} \oplus \ell_{b}^{0} = \ell_{a}^{0} \oplus \ell_{b}^{0} \oplus \mathbf{R} \oplus \mathbf{R} = \ell_{a}^{1} \oplus \ell_{b}^{1}$$

$$\ell_{a}^{1} \oplus \ell_{b}^{0} = \ell_{a}^{0} \oplus \ell_{b}^{0} \oplus \mathbf{R} = \ell_{a}^{0} \oplus \ell_{b}^{1}$$

$$\ell_{a}^{0}, \ell_{a}^{1} \qquad \ell_{b}^{0}, \ell_{b}^{1}$$

$$\ell_{e}^{0}, \ell_{e}^{1}$$

• No ciphertexts, encryption, or communication is needed for XOR gates! [KS08] V. Kolesnikov and T. Schneider, "Improved garbled circuit: Free XOR gates and applications," 2008.

CCS 2018

Garbled Row Reduction (1)

- The first garbled row reduction optimization reduces the size of a garbled gate from 4 to 3 ciphertexts
- The garbler generates the output labels such that the first entry of the garbled table is derived deterministically and no longer needs to be sent

$$\ell_e^0 = \mathsf{Dec}_{\ell_a^0, \ell_b^0}(0)$$

- This lowers communication, but adds more computational to the garbler side
- It is also compatible with free XOR

[NPS99] M. Naor, B. Pinkas, and R. Sumner. "Privacy preserving auctions and mechanism design," 1999.

Garbled Row Reduction (2)

- The second garbled row reduction optimization reduces the size of a garbled gate from 4 to 2 ciphertexts
- The evaluator uses polynomial interpolation over a quadratic curve
- The output label is encoded as the y value on the polynomial at point 0
- As an example for AND gate

$$k_{1} = \text{Dec}_{\ell_{a}^{0}, \ell_{b}^{0}}(0), \quad k_{2} = \text{Dec}_{\ell_{a}^{0}, \ell_{b}^{1}}(0)$$
$$k_{3} = \text{Dec}_{\ell_{a}^{1}, \ell_{b}^{0}}(0), \quad k_{4} = \text{Dec}_{\ell_{a}^{1}, \ell_{b}^{1}}(0)$$

[PSSW09] B. Pinkas, T. Schneider, N. Smart, and S. Williams, "Secure two-party computation is practical," 2009.

CCS 2018

Garbled Row Reduction (2)

- One point on the polynomial is revealed in the usual way and two more (the ones at x = 5 and x = 6) are included in the garbled gate
- There are two different quadratic polynomials P and Q to consider
 - *P* and *Q* are designed to intersect exactly in the two points included in the garbled gate
 - in the Case of AND gate, three points on *P* are $(\text{Dec}_{\ell_a^0,\ell_b^0}(0), \text{Dec}_{\ell_a^1,\ell_b^0}(0), \text{Dec}_{\ell_a^0,\ell_b^1}(0))$ and three points on *Q* are $(\text{Dec}_{\ell_a^1,\ell_b^1}(0), Q(5), Q(6))$ (with respect to their *y*-value)
- This is not compatible with free XOR!

Fattaneh Bayatbabolghani and Marina Blanton

CCS 2018

Half Gates Optimization

- Half-gates is the first optimization technique that simultaneously
 - requires only two ciphertexts per garbled AND gate
 - is compatible with the "free XOR" optimization
- It relies on the fact that

 $a \wedge b = (a \wedge (b \oplus r)) \oplus (a \wedge r)$

where r is a random value chosen by the garbler

• The value of $b\oplus r$ is revealed to the evaluator

[ZRE15] S. Zahur, M. Rosulek, and D. Evans, "Two halves make a whole," 2015.

Half Gates Optimization

• If the green rows are equal to 0 using garbled row reduction, then there are only two ciphertexts are transmit

• Half gates and garbled row reduction techniques reduce bandwidth associated with transmitting garbled gates

CCS 2018

Using Fixed-Key Blockcipher

- This optimization modifies how garbled gates are constructed to use fixed-key AES encryption instead of hash functions
- AES hardware implementations are widely available on commodity hardware and allow for significant computation speedup
- This technique is compatible with the "free XOR" and row reduction techniques

[BHKR13] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway, "Efficient garbling from a fixed-key blockcipher," 2013.

Garbled Circuit Evaluation (Malicious)

- Yao's garbled circuit evaluation is not secure in the presence of a malicious garbler
 - there is the need to enforce correct circuit construction and several solutions exist [GMW91], [GMW87], [LP07], [SS11], [L13]
 - we focus on cut-and-choose approaches [LP07], [SS11], [L13]

[GMW91] O. Goldreich, S. Micali, and A. Wigderson, "Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems," 1991.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson, "How to play any mental game-or-a completeness theorem for protocols with honest majority," 1987.

[LP07] Y. Lindell and B. Pinkas, "An efficient protocol for secure two-party computation in the presence of malicious adversaries," 2007.

[SS11] A. Shelat and C. Shen, "Two-output secure computation with malicious adversaries," 2011.

[L13] Y. Lindell, "Fast cut-and-choose-based protocols for malicious and covert adversaries," 2013.

CCS 2018

Cut-and-Choose

• The garbler generates s independent garblings of a circuit C and opens the circuits of the evaluator's choice

Cut-and-Choose

- The garbler generates s independently garbled versions of circuit C
- The evaluator asks the garbler to open a number of circuits of its choice and garbler reveals the randomness/keys
- The evaluator verifies correctness of the opened circuits
- The parties run OT/OT extension to retrieve the labels corresponding to the evaluator's input for the unopened circuits
- The garbler sends the labels corresponding its own input for the unopened circuits
- The evaluator evaluates the unopened circuits, and returns the majority output

Garbled Circuit Evaluation (Malicious) [LP07]

- Lindell-Pinkas solution proposed the use of cut-and-choose
- By opening a half of the garbled circuits and evaluating the other half, output is incorrect with probability at most $2^{-0.311s}$

Garbled Circuit Evaluation (Malicious) [SS11]

- Shelat-Shen construction used the cut-and-choose approach and proposes novel defence mechanisms for input consistency, selective failure, and output authentication
- It showed that if the garbler opens 60% of the constructed circuits instead 50%, the error decreases from $2^{-0.311s}$ to $2^{-0.32s}$
 - to achieve the error of 2^{-40} , we need approximately 125 circuits instead of 128

Garbled Circuit Evaluation (Malicious) [L13]

- How many circuits needed to be garbled to ensure correct output?
 - previously, for error probability of 2^{-40} , 125 circuits were needed
 - this is a heavy computational overhead compared to the semi-honest solution
- Lindell proposed an optimized cut-and-choose solution that required only s circuits with some small additional overhead to achieve error of 2^{-s}

Garbled Circuit Evaluation (Malicious) [L13]

- Why do we need the majority of the circuits to be correct?
 - an incorrect circuit may compute the desired function if the evaluator's input meets some condition and otherwise compute garbage
 - if the evaluator aborts, it means the garbler knows that the evaluator's input does not meet the condition
 - if the evaluator does not abort, it means the garbler knows that the evaluator's input meets the condition
 - we must enforce that most evaluated circuits are correct with overwhelming probability

Garbled Circuit Evaluation (Malicious) [L13]

- Even if all opened circuits out of s are correct and all unopened circuits are incorrect, the error probability is still bounded by 2^{-s}
- How is it possible?
 - both parties run small additional secure computation
 - if the evaluator receives two different outputs in two different circuits,
 the additional secure computation allows him to learn the garbler's input
 - in this case, the evaluator can compute the original function f by himself because it knows both inputs
 - the garbler does not know which case happened

Garbled Circuit Evaluation (Malicious)

- The cut-and-choose technique alone does not provide full security
- Additional attacks:
 - input consistency
 - selective failure
 - output authentication

Input Consistency

- When multiple circuits are being evaluated in cut-and-choose, a malicious garbler can provide inconsistent inputs to different evaluation circuits
 - after obtaining the output, the garbler can extract information about the evaluator's input
- Defenses:
 - equality checker [MF06]
 - input commitment [LP07]
 - pseudorandom synthesizer [LP11]
 - malleable claw-free collections [SS11]

[MF06] P. Mohassel and M. Franklin, "Efficiency tradeoffs for malicious two-party computation," 2006.

[LP11] Y. Lindell and B. Pinkas, "Secure two-party computation via cut-and-choose oblivious transfer," 2011.

CCS 2018

Selective Failure

- A malicious garbler can also use inconsistent labels during garbling and later during OT
- The evaluator's input can be inferred from whether or not the protocol completes
- Defenses:
 - random input replacement: input bit b is replaced ρ random bits b_i subject to $b = b_1 \oplus b_2 \oplus \ldots \oplus b_\rho$ [LP07]
 - committing OT [K08] [SS11]
 - combining OT and the cut-and-choose steps into one protocol [LP11]

[K08] M. Kiraz, "Secure and fair two-party computation," 2008.

Output Authentication

- In many cases, both the garbler and evaluator receive outputs from secure function evaluation, i.e., $f(x, y) = (f_1(x, y), f_2(x, y))$
- A malicious evaluator may claim an arbitrary value to be the generator's output coming from circuit evaluation
- Defenses:
 - verifying authenticity of the garbler's output by modifying the function as $f(x, y) = (f_1(x, y) \oplus c, f_2(x, y))$ and computing its MAC [LP07]
 - using zero knowledge proofs [K08]
 - using a signature-based solution [SS11]

SMC based on Secret Sharing

- An alternative technique is to use threshold linear secret sharing for secure multi-party computation
 - (n, t)-threshold secret sharing allows secret v to be secret-shared among n parties such that:
 - no coalition of t or fewer parties can recover any information about v
 - t + 1 or more shares can be used to efficiently reconstruct v
 - information-theoretic security (i.e., independent of security parameters) is achieved

Shamir's (n, t)-Threshold Scheme

Given n points on the plane (x₁, y₁), ..., (x_n, y_n) where all x_is are distinct, there exists an unique polynomial f of degree ≤ n − 1 such that f(x_i) = y_i for i = 1,...,n

- f can be determined using Lagrange interpolation

• This also holds in a finite field, e.g., in \mathbb{Z}_p where p is prime

[S79] A,. Shamir, "How to share a secret," 1979.

CCS 2018

Shamir's (n, t)-Threshold Scheme

- Shamir secret sharing works as follows
 - suppose we use finite field \mathbb{Z}_p for a prime p
 - choose prime p of sufficient size to represent all values
 - any private value v is represented as an element in Z_p
 - to create shares, choose polynomial $f(x) = a_0 + a_1x + a_2x^2 + \dots + a_tx^t \mod p$, where a_1, \dots, a_t are random and $a_0 = v$
 - let [v] secret shared v and $[v]_i = (i, f(i))$ represent the share distributed to the *i*th party for $i \in [1, n]$
Shamir's (n, t)-Threshold Scheme

Shamir's (n, t)-Threshold Scheme

The secret v can be reconstructed from every subset of t + 1 or more shares
 (x_i, y_i) using Langrange interpolation

$$f(x) = \sum_{i=1}^{t+1} y_i \prod_{j=1, j \neq i}^{t+1} \frac{x - x_j}{x_i - x_j} \mod p$$

$$v = f(0) = \sum_{i=1}^{t+1} y_i \prod_{j=1, j \neq i}^{t+1} \frac{-x_j}{x_i - x_j} \mod p$$

• Any t or fewer shares do not leak any information about v

SMC based on Shamir Secret Sharing

- Function evaluation is normally expressed using composition of elementary operations
 - functions represented in terms of additions/subtractions and multiplications are called arithmetic circuits
- Performance of any function in this framework is measured in terms of
 - the number of elementary interactive operations
 - the number of sequential interactive operations or rounds

Addition and Subtraction Operations

- Shamir's secret sharing is a linear secret sharing scheme
 - any linear combination of secret shared values can be computed directly on the shares
- Example: addition
 - let $f_1(x) = v_1 + a_1 x + a_2 x^2 + \dots + a_t x^t$ and $f_2(x) = v_2 + a'_1 x + a'_2 x^2 + \dots + a'_t x^t$
 - then $g(x) = f_1(x) + f_2(x) =$ $v_1 + v_2 + (a_1 + a'_1)x + (a_2 + a'_2)x^2 + \dots + (a_t + a'_t)x^t$
 - this means that any party can compute its share of $v_1 + v_2$ as $[v_1]_i + [v_2]_i$ for each i
 - subtraction is performed in a similar way

SMC tutorial

- Example: scalar multiplication
 - we can multiply secret-shared v by known integer c by directly multiplying each share by c

- if
$$f(x) = v + a_1 x + a_2 x^2 + \ldots + a_t x^t$$
, then
 $g(x) = c \cdot f(x) = c \cdot v + (c \cdot a_1)x + (c \cdot a_2)x^2 + \ldots + (c \cdot a_t)x^t$

-
$$[c \cdot v]_i = c[v]_i$$
 for each i

• What about multiplication of two secret values?

- To multiply $[v_1]$ and $[v_2]$, each party could locally multiply its shares
 - the product of their representation as $f_1(x)$ and $f_2(x)$ is

$$g(x) = f_1(x) \cdot f_2(x) = v_1 \cdot v_2 + \lambda_1 x + \lambda_2 x^2 + \ldots + \lambda_{2t} X^{2t}$$

- the polynomials are no longer of degree t, but rather of degree 2t
- reduction of the polynomial's degree is needed

• We can write

$$A \quad . \quad \begin{bmatrix} v_1 \cdot v_2 \\ \lambda_1 \\ \cdot \\ \cdot \\ \cdot \\ \lambda_2 t \end{bmatrix} = \begin{bmatrix} g(0) \\ g(1) \\ \cdot \\ \cdot \\ g(2t) \end{bmatrix}$$

where A is $(2t + 1) \times (2t + 1)$ matrix and is defined as $a_{ij} = i^{j-1}$

- A is non-singular and has inverse A^{-1}
- let the first row of A^{-1} be $[\gamma_0, \gamma_1, \ldots, \gamma_{2t}]$

[GRR98] R. Gennaro, M. Rabin, and T. Rabin, "Simplified VSS and fast-track multiparty computations with applications to threshold cryptography," 1998.

CCS 2018

SMC tutorial

- The inverse equation implies that $v_1 \cdot v_2 = g(0)\gamma_0 + g(1)\gamma_1 + \ldots + g(2t)\gamma_{2t}$
- Every player *i* chooses a random polynomial $h_i(x)$ of degree *t* such that $h_i(0) = g(i)$
- Let H(x) be defined as $\sum_{i=0}^{2t} \gamma_i h_i(x)$, where $H(0) = v_1 \cdot v_2$
 - this dictates that 2t < n
- Each player *i* distributes shares $(j, h_i(j))$ to other players
 - now each player j can compute its own share of $v_1 \cdot v_2$ as (j, H(j))
- Polynomial H(x) is of degree t and it is random

SMC based on Secret Sharing

- SMC based on secret sharing supports the flexible setup with three groups of participants:
 - each data owner secret-shares its private input among the computational parties prior to the computation
 - the computational parties evaluate the function on secret-shared data
 - the computational parties communicate their shares of the result to output recipients who locally reconstruct the output

SMC based on Secret Sharing

- A number of techniques are available to strengthen the security guarantees to hold in the malicious model
 - traditionally security has been guaranteed by using verifiable secret sharing techniques
 - each multiplication is followed by a zero-knowledge proof of knowledge that the operation was carried out correctly
 - additional zero-knowledge proofs may be used to prove correct sharing of input or other additional operations
 - more recently computation employs a different structure

- Damgård-Nielsen construction works for both semi-honest and malicious models with honest majority
- Multiplication is performed using multiplication triples
 - multiplication triples are of the form (a, b, c) with c = ab
 - each of a, b, and c is represented using uniformly random t-sharings
 - triples are generated during the preprocessing phase
 - they are consumed during the online phase

[DN07] I. Damgård and J. Nielsen, "Scalable and unconditionally secure multiparty computation," 2007.

• To generate a triple

- 1. the parties compute a random value and its two sharings: *t*-sharing [r] and 2*t*-sharing $\langle R \rangle$
- 2. all locally parties compute $\langle D \rangle = [a][b] + \langle R \rangle$ on their own shares where shares of random a and b are given
- 3. all parties open D which is a uniformly random 2t-sharing
- 4. all parties compute [c] = D [r] with known D and random t-sharing r (which equals to R)
- 5. each party has its own share of (a, b, c)

- During online phase, multiplication of secret-shared [x] and [y] is as follows:
 - 1. choose a fresh triple [a], [b], [c]
 - 2. all parties compute $[\alpha] = [x] + [a]$ and $[\beta] = [y] + [b]$
 - 3. all parties open α and β
 - 4. all parties compute $[xy] = -\alpha\beta + \alpha[y] + \beta[x] [c]$

- Inputs are entered using pre-computed random *t*-sharings [*r*] known to one party
 - to enter input x, the input owner computes $\delta = x + r$ and broadcasts δ to others
 - all players compute $[x] = \delta [r]$
- To make it secure in the presence of malicious parties
 - small portions of the protocol utilize verifiable secret sharing (VSS) for generating random elements
 - conflict resolution algorithm is used to enforce consistent sharings
 - many values are verified in a batch

SMC based on Secret Sharing (Malicious)

- SPDZ is another construction that works for malicious models with up to n-1 corrupted parties
 - with no majority, the rules of the game change
 - if at least one party misbehaves or aborts, the computation cannot continue
 - we use (n, n 1) secret sharing

CCS 2018

• party *i* holds a_i such that $a = a_1 + a_2 + \cdots + a_n$

[DPSZ12] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, "Multiparty computation from somewhat homomorphic encryption," 2012.

SPDZ (Malicious)

- SPDZ uses the same idea high-level structure as [DN07]
 - computation is divided into the preprocessing and online phases
 - all the expensive public-key operations are performed during preprocessing
 - the online phase is very efficient
- Multiplication also uses precomputed triples
 - this time they are generated using somewhat homomorphic encryption (SHE)
 - zero-knowledge proofs of plaintext knowledge (ZKPoPKs) are used to ensure that the parties encrypt data as they should using SHE

SPDZ (Malicious)

- Computation proceeds on a different representation
 - each private *a* is secret-shared as

$$\langle a \rangle = (\delta, (a_1, \dots, a_n), (\gamma(a)_1, \dots, \gamma(a)_n))$$

- here
$$\gamma(a) = \alpha(a + \delta)$$
 is a MAC on a

- α is a global private (secret-shared) value (MAC key)
- each δ is public

CCS 2018

- each party i holds a_i and $\gamma(a)_i$ and each operation updates both values

SPDZ (Malicious)

- SPDZ online computation
 - inputs are entered using pre-generated random values
 - additions are local
 - multiplications consume multiplication triples and are partially open to verify correctness
 - at the end of the computation, the parties open the MAC key α
 - they verify that the MACs on the output (secret-shared) values match the values
 - compute randomized difference, open it, and check for non-zero values
 - if any issues are detected, abort; otherwise, open the results

SPDZ Followup Work

- SPDZ is attractive because of the strong security guarantees and fast online computation
- A number of improved results followed
 - improvements to the offline phase
 - reusability of the MAC key
 - lightweight protocol for covert adversaries

[DKL+13] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. Smart, "Practical covertly secure MPC for dishonest majorityor: breaking the SPDZ limits," 2013.

Compilers for Secure Two-Party Computation

Compiler	PL	AND gate	BW	Adapted by
Fairplay	Java	30 gates/sec	900Bps	
FastGC	Java	96K gates/sec	2.8MBps	CBMC-GC,
				PCF, SCVM
ObliVM-GC	Java	670K gates/sec	19.6MBps	ObliVM,
				GraphSc
GraphSC	Java	580K gates/sec	16MBps	
		per pair of cores	per pair of cores	
JustGarble	С	11M gates/sec	315MBps	TinyGarble
	AES-NI	1 11vi gales/sec		TinyOarbie

The table is adapted from ObliVM

JustGarble only provides garbling/evaluation (not an end-to-end system)

Compilers for Secure Multi-Party Computation

Compiler	No. parties	Parallelism	Functionality
Sharemind	3	arrays	non-int arithmetic
VIFF	≥ 3	interactive op	varying precision
PICCO	> 3	loops, arrays,	non-int arithmetic,
	~ 5	and user-specified	varying precision
SPDZ	> 3	user specified	non-int arithmetic,
	~ 5	user-specified	non-arithmetic

• The table is adapted from PICCO

[SPDZ] T. Araki, A. Barak, J. Furukawa, M. Keller, Y. Lindell, K. Ohara, and H. Tsuchida, "Generalizing the SPDZ Compiler for Other Protocols," 2018.

Summary of SMC Techniques

- The two types of SMC techniques described so far can be used to evaluate any function securely
 - depending on the computation, one might be preferred over the other
- A large number of custom protocols for specific functions also exist
 - example: private set intersection
 - these can combine the above techniques or use custom approaches
 - the goal of custom protocols is to outperform general solutions