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Abstract

In this paper we propose a method for solving some well-known classes of Lane-Emden type equations
which are nonlinear ordinary differential equations on the semi-infinite domain. The proposed ap-
proach is based on an Unsupervised Combined Artificial Neural Networks (UCANN) method. Firstly,
The trial solutions of the differential equations are written in the form of feed-forward neural net-
works containing adjustable parameters (the weights and biases); results are then optimized with
the combined neural network. The proposed method is tested on series of Lane-Emden differential
equations and the results are reported. Afterward, these results are compared with the solution of
other methods demonstrating the efficiency and applicability of the proposed method.

Keywords : Lane-Emden type equations; Nonlinear ODE; Semi-infinite domain; Astrophysics; Artificial
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1 Introduction

L
ane-Emden type equations are nonlinear or-
dinary differential equations on semi-infinite

domain. They are categorized as singular ini-
tial value problems. These equations describe the
temperature variation of a spherical gas cloud un-
der the mutual attraction of its molecules and
subject to the laws of classical thermodynam-
ics. The polytropic theory of stars essentially fol-
lows out of thermodynamic considerations, that

∗Department of Computer Sciences, Shahid Beheshti
University, Tehran, Iran.

†Corresponding author. roozbahani2@gmail.com
‡Department of Computer Sciences, Shahid Beheshti

University, Tehran, Iran.
§Department of Computer Sciences, Shahid Beheshti

University, Tehran, Iran.

deals with the issue of energy transport, through
the transfer of material between different lev-
els of the star. These equations are one of the
basic equations in the theory of stellar struc-
ture and has been the focus of many studies
[1, 10, 65, 50, 2, 60, 25, 26, 27, 28, 29, 61, 3,
4, 38, 58, 62, 30, 31, 32, 33].
Bender et al. [10] proposed a new perturba-
tion technique based on an artificial parameter
δ, the method is often called δ-method. Man-
delzweig and Tabakin [65] used the quasilineariza-
tion approach to solve the standard Lane-Emden
equation.[33]
Shawagfeh [50] applied a nonperturbative approx-
imate analytical solution for the Lane-Emden
type equation using the Adomian Decomposi-
tion Method. His solution was in the form of a
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power series. He used Padé approximants method
[39, 40] to accelerate the convergence of the power
series.[33]
In [1], Wazwaz employed the Adomian Decompo-
sition Method [41, 42] with an alternate frame-
work designed to overcome the difficulty of the
singular point. It was applied to the differen-
tial equations of Lane-Emden type. Further, the
author of [2] used the Modified Decomposition
Method for solving the analytical treatment of
nonlinear differential equations such as the Lane-
Emden type equation.[33]
Liao [60] provided an analytical algorithm for
Lane-Emden type equations. This algorithm log-
ically contains the well-known Adomian Decom-
position Method. J. H. He [25] employed Ritz’s
method to obtain an analytical solution of the
problem. By the semi-inverse method, a varia-
tional principle is obtained for the Lane-Emden
type equation.[33]
Parand et al. [30, 31, 34, 35] presented numeri-
cal techniques to solve higher ordinary differential
equations such as Lane-Emden. Ramos [26, 27,
28, 29] solved Lane-Emden equations through dif-
ferent methods. Author of [27] presented the lin-
earization method for singular initial-value prob-
lems in second-order ordinary differential equa-
tions such as Lane-Emden. These methods re-
sult in linear constant-coefficients ordinary dif-
ferential equations which can be integrated ana-
lytically, thus yielding piecewise analytical solu-
tions and globally smooth solutions. Later this
author [29] developed piecewise-adaptive decom-
position methods for the solution of nonlinear or-
dinary differential equations. In [28],series solu-
tions of the Lane-Emden type equation have been
obtained by writing this equation as a Volterra
integral equation and assuming that the nonlin-
earities are sufficiently differentiable.[33]
Yousefi [61] presented a numerical method for
solving the Lane-Emden equations. Bataineh et
al. [3] presented an algorithm based on Ho-
motopy Analysis Method (HAM) [43] to obtain
the exact and/or approximate analytical solu-
tions of the singular IVPs of the Emden-Fowler
type equation.[33]
In [44], Chowdhury and Hashim presented an

algorithm based on the Homotopy-Perturbation
Method (HPM) [18, 45, 5] to solve singular IVPs
of time-independent equations.[33]
Aslanov [4] introduced a further development in
the Adomian Decomposition Method to over-
come the difficulty at the singular point of non-
homogeneous, linear and nonlinear Lane-Emden-
like equations.[33]
Dehghan and Shakeri [38] applied an exponential
transformation to the Lane-Emden type equa-
tions to overcome the difficulty of a singular point
at x = 0 and solved the resulting nonsingu-
lar problem by the variational iteration method
[33, 46, 47].
Yildirim and Özis [6] presented approximate so-
lutions of a class of Lane-Emden type singu-
lar IVPs problems, by the variational iteration
method.[33]
Marzban et al. [21] used a method based upon
hybrid function approximations. They used the
properties of hybrid of block-pulse functions and
Lagrange interpolating polynomials together for
solving the nonlinear second-order initial value
problems and the Lane-Emden type equation.[33]
Recently, Singh et al. [55] provided an efficient
analytic algorithm for Lane-Emden type equa-
tions using Modified Homotopy Analysis Method;
also, they used some well-known Lane-Emden
type equations as test examples.[33]
We refer the interested reader to [7, 8] for anal-
ysis of the Lane-Emden type equation based on
the Lie symmetry approach.[33]
Moreover, Solving differential equations by un-
supervised neural network has some advan-
tages rather than traditional numerical methods.
Firstly, in ANN, the solution is continuous over
all the domain of integration; otherwise, the nu-
merical methods provide solutions only over dis-
crete points. In addition, in ANN, The computa-
tional complexity does not increase considerably
with the number of sampling points and with the
number of dimensions involved in the problem. In
a sense, the unsupervised ANN learns to solve the
DE analytically. Because the correct form of the
DE solution is unknown beforehand, the ANN is
trained in an unsupervised manner by using the
Lane-Emden equation instead of error function
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that is derived from the DE itself and the gov-
erning boundary conditions. For designing the
ANN, we use this error function in training algo-
rithms. Ref [22] was solved ordinary differential
equations with the unsupervised method.[14]
The general method for solving differential equa-
tions with unsupervised feed-forward neural net-
works was first introduced by Van Milligen et al.
[9]. They stated the general method and applied
it to a magnetohydrodynamic plasma equilibrium
problem.
Other authors applied that method to other phys-
ical problems. in [23], ANN was used for solving
ordinary and partial differential equations. Mon-
terola and Saloma [11, 12] solved the non-linear
Schrodinger equation. Quito et al. [48, 49] used
neural networks for solving self-gravitating sys-
tems of N-bodies.
In 2003, a controlled heat problem up to three
decimal digits precision was solved by using
three-layered and feed-forward neural networks
[51]. The solutions for KuramotoSivashinsky and
Navier-Stokes equations by using neural networks
were concerned in [52]. [53] contains the modeling
of dynamical behavior of the KuramotoSivashin-
sky equation by using neural networks. P. Bala-
subramaniam et al. [57] was solved matrix Ric-
cati differential equation for the linear quadratic
singular system using neural networks. The
Hamilton Jacobi Bellman equation was solved by
the combination of the least-squares methods and
the neural networks in [66].
Moreover, various ODE examples were solved by
Filici [13]. Also, in [67] nonlinear Schrodinger
equation was solved by feed-forward neural net-
works. Recently, in [24], some differential equa-
tions were solved by constructing neural net-
works, and in [59] systems of partial differential
equations were solved by neural networks and op-
timization techniques.
This paper is arranged as follows: in Section 2, we
describe the general formulation of the proposed
approach and derive formulas for computing the
gradient of the error function and some basics of
combined feed forward artificial neural networks
are briefly presented. In Section 3 the proposed
method is applied to some types of Lane-Emden

equations, and a comparison is made with the
existing analytic or exact solutions that were re-
ported in other published works in the literature.
And in the final Section, conclusions are drawn
and described.

2 Method Description

2.1 Feed forward artificial neural net-
works

A general structure of feed-forward neural
networks is shown in Fig. 1. The feed-forward
neural networks are the most popular architec-
tures due to their structural flexibility, good
representational capabilities and availability of
a large number of training algorithm [63]. This
network consists of neurons that are arranged
in layers in which every neuron is connected to
all neurons of the next layer (a fully connected
network).

3 Main results

3.1 Feed forward artificial neural net-
works

A general structure of feed-forward neural net-
works is shown in Fig. 1. The feed-forward neu-
ral networks are the most popular architectures
due to their structural flexibility, good represen-
tational capabilities and availability of a large
number of training algorithm [63]. This network
consists of neurons that are arranged in layers in
which every neuron is connected to all neurons of
the next layer (a fully connected network).
Artificial neural networks can make a nonlin-

ear mapping from the inputs to the outputs of
the corresponding system [36]. This is suitable
for analyzing the systems that are described by
initial-boundary value problems that have no an-
alytical solutions or their analytical solutions are
not computable easily. Any set of differential
equations can be represented by the following ex-
pression:

D(F (z)) = 0. (3.1)
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Figure 1: A multi-layer feed forward neural network
structure.

Where D is any non-linear, inhomogeneous dif-
ferential operator and F (z) is the solution that
satisfies Eq.(3.1) and the appropriate boundary
conditions.
Considering that a feed-forward neural network
is an approximate universal function [36, 37], the
goal is finding a neural network F ∗(z) which ap-
proximates F (z) in the finite domain z ∈ [a, b]n.
It is well known from neuron computing sciences
[63]. In the case of one hidden layer, the func-
tional form of component y of networks output
F ∗ is given by

F ∗
y = f2(

∑
u

wyuf
1(
∑
v

wuvxv + bv) + bu), (3.2)

where the w’s are the networks adaptive coeffi-
cients (weights), the b’s are the bias and f is a
sigmoid activation function. Note that F ∗ is a
continuous and derivable function of z; therefore,
the differential operator D can act on it.
For every continuous function F and given ϵ > 0,
there are a natural number H and real constants
bi, vi, and wij(i = 1, ..., H, j = 1, ..., n), so that
[19]:

|F (x1, ..., xn)− (3.3)

f2(
H∑
i=1

wisf
1(

n∑
j=1

wijxj + bi) + bs)|< ε.

In order to find an approximation of F (z), it
is natural to choose Eq.(3.1) plus the equations
that are defining the boundary conditions as the
performance function of the network.
The accuracy of the ANN solution depends on the
way of convergence of Eq.(3.1) plus the equations
that are defining the boundary conditions as the

performance function to zero during the training.
Specifically, this equation is formulated as:

Eq =
1

2
|D(F ∗)|2+1

2

k∑
i=1

|Cq
i |

2, (3.4)

here , D(F ∗(x1, · · · , xn)) = ε
(Eq.(3.3)) where (x1, x2, ..., xn) are the n inde-

pendent variables of equation, and Cq
k(x1, · · · , xn)

derived from the boundary conditions. To
achieve an accurate approximate universal func-
tion, training must reduce Eq to a value that is as
close as possible to zero. Eq converges to zero if
and only if two terms of Eq.(3.4) identically equal
to zero.

3.2 Combined Neural Network Mod-
els

The combined neural network topology was used
for the computation of Lane-Emden type equa-
tions. This construction is based on a straight-
forward approach that has been termed stacked
generalization. The stacked generalization con-
cepts formalized by Wolpert [15] and refer to the
schemes for feeding information from one set of
generalizers to another before forming the final
predicted value (output). The unique contribu-
tion of stacked generalization is that the infor-
mation fed into the net of generalizers comes
from multiple partitioning of the original learn-
ing set.[16, 17].
The network topology was the Multi-Layer Per-
ceptron Neural Network(MLPNN) with a single
or two hidden layers in the first level and two
hidden layers in the second level. The network
had one input neuron, equal to the number of
input of ODE. We trained second level neural
network to combine the predictions of the first
level networks. The second level network has
one input. The target for the second level net-
work was the same as the target of the origi-
nal data. Since the values of mean square errors
(MSEs) converged to a small constants approxi-
mately zero in epochs, training of the neural net-
works was successful. In the second level analy-
sis, the Levenberg-Marquardt training algorithms
were used.



K. Parand et al. /IJIM Vol. 5, No. 4 (2013) 355-366 359

4 Application

In this Section, we apply Unsupervised Com-
bined Neural Networks (UCNN) method for the
computation of Lane-Emden type equations.
In general the Lane-Emden type equations are
formulated as

y
′′
(x) +

α

x
y′(x) + f(x)g(y) = h(x), αx ≥ 0 ,

(4.5)
with initial conditions

a) y(0) = A, (4.6)

b) y
′
(0) = B. (4.7)

Where α, A and B are real constants and f(x),
g(y) and h(x) are some given functions. For
other special forms of g(y), the well-known
Lane-Emden type equations were used to model
several phenomena in mathematical physics
and astrophysics such as the theory of stellar
structure, the thermal behavior of a spherical
cloud of gas, isothermal gas spheres and the
theory of thermionic currents [33, 64, 56].
In this section we apply the Unsupervised
Combined Neural Networks method to solve
some well-known Lane-Emden type equations for
various f(x), g(y), A and B, and constant form
of α = 2 and h(x) = 0.

4.1 Example 4.1 (The standard Lane-
Emden equation)

For f(x) = 1, g(y) = ym, A = 1 and B = 0,
Eq.(4.5) is the standard Lane-Emden equation
that was used to model the thermal behavior of
a spherical cloud of gas acting under the mutual
attraction of its molecules and subject to the clas-
sical laws of thermodynamics [54].

y
′′
(x) +

2

x
y
′
(x) + ym(x) = 0, x ≥ 0 , (4.8)

subject to the boundary conditions

a) y(0) = 1,

b) y
′
(0) = 0.

Where m ≥ 0 is constant. Substituting m = 0
into Eq.(4.8) leads to the exact solution

y(x) = 1− 1

3!
x2.

We apply the UCNN method to solve the stan-
dard Lane-Emden equation (4.8) for m = 0. For
the ANN corresponding to y(x), we consider the
network that takes the value of x as an input
and its output is one value corresponding to y(x).
We chose three-layer ANN consisting of one in-
put unit, nk hidden units with sigmoid activation
functions, and one output units with linear ac-
tivation functions. In terms of Eq. (3.2), the
relation between the ANN and the lane-Emden
equation (4.8) can be expressed as:

a0 = x, (4.9)

a1 = f(w1a0 + b),

a2 = y(x) = w2f(w1a0 + b),

where

w1(T ) = (w1
11, · · · , w1

nk1
),

w2(T ) = (w2
11, · · · , w2

1nk
),

b(T ) = (b1, · · · , bnk
),

f(x) =
1

1 + e−x
,

and nk is the number of hidden layer units. From
Eq. (4.9) and using Eq. (4.8), Eq is formulated
as

Eq =
1

2
(
∂2y(x)

∂x2
+

2

x

∂y(x)

∂x
) +

1

2
cq,

where cq derived from the boundary conditions
and

∂y(x)

∂x
= w2w1f ′(w1x+ b),
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Table 1: Comparison of y(x), between present method and series solution given by Horedt [20] for Example
4.1.

x Present method Exact value Error

0 1.000126640 1.000000000 1.26e− 04
0.01 0.999727014 0.999983333 2.56e− 04
0.02 0.999831415 0.999933333 1.01e− 04
0.03 0.999930625 0.999850000 8.06e− 05
0.04 1.000127061 0.998933333 1.96e− 04
0.05 0.999904121 0.999583333 3.20e− 04
0.06 0.999915186 0.999400000 5.15e− 04
0.07 0.999989264 0.999183333 8.05e− 04
0.1 1.000416072 0.998333333 2.08e− 03
0.2 0.993406734 0.993333333 7.34e− 05
0.23 0.991107044 0.991183333 7.62e− 05
0.4 0.973300790 0.973333333 3.25e− 05
0.8 0.893290013 0.893333333 4.33e− 05
1 0.833508998 0.833333333 1.75e− 04

∂2y(x)

∂x2
= w2(w1)2f ′′(w1x+ b).

We train the network with 200 equidistance
points between 0 and 1 and by trail and error
found that the most trainable four-layer archi-
tecture is one with 3 hidden nodes. Tables 1
show the approximations of y(x) for the standard
Lane-Emden equation for m = 0 respectively
obtained by the method proposed in this paper
and those obtained by Horedt [20].

4.2 Example 4.2

For f(x) = 1, g(y) = sinh(y), A = 1 and B =
0, Eq.(4.5) will be one of the Lane-Emden type
equations that we solve:

y
′′
(x) +

2

x
y
′
(x) + sinh(y) = 0, x ≥ 0 , (4.10)

subject to the boundary conditions

a) y(0) = 1,

b) y
′
(0) = 0.

A series solution obtained by Wazwaz [1] by using
Adomian Decomposition Method (ADM) is:

y(x) ≃ 1− (e2 − 1)x2

12e
+

1

480

(e4 − 1)x4

e2

− 1

30240

(2e6 + 3e2 − 3e4 − 2)x6

e3
+

1

26127360

(61e8 − 104e6 + 104e2 − 61)x8

e4
.

We intend to apply UCNN method to solve
Eq.(4.10). We choose the four-layer ANN con-
sisting of one input unit. So the relation between
the ANN and the Lane-Emden equation (4.10)
can be expressed as:

a0 = x,

a1 = f(w1a0 + b1),

a2 = f(w2f(w1a0 + b1) + b2). (4.11)

a3 = y(x) = w3f(w2f(w1a0 + b1) + b2).

w3(T ) = (w3
11, · · · , w3

1nk
),

b1(T ) = (b1, · · · , bnk
),

b2(T ) = (b1, · · · , bmk
).

and nk, mk are the number of hidden layers units.
From Eq. (4.11) and using Eq. (4.10), Eq is
formulated as

Eq =
1

2
(
∂2y(x)

∂x2
+

2

x

∂y(x)

∂x
+ sinh(y)) +

1

2
cq,
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Table 2: Comparison of y(x), between present method and series solution given by Wazwaz [1] for Example
4.2.

x Present method ADM[1] Error

0 0.996822985 1.000000000 3.17e− 03
0.4 0.968134848 0.969043758 9.08e− 04
0.45 0.960946948 0.960947741 7.93e− 07
0.5 0.952496238 0.951961101 5.35e− 04
0.6 0.932103688 0.931397142 7.06e− 04
0.7 0.907166768 0.907530823 3.64e− 04
0.8 0.879572455 0.880565336 9.92e− 04
0.9 0.850637959 0.850724891 8.69e− 05
0.92 0.844425448 0.844432833 7.38e− 06
1 0.817336078 0.818251666 9.15e− 04
1.3 0.707622667 0.707679500 5.68e− 05
1.5 0.625987420 0.625891607 9.58e− 05
1.51 0.621694775 0.621688632 6.14e− 06
2 0.430106143 0.413669103 1.64e− 02

Table 3: Comparison of y(x), between present method and series solution given by Wazwaz [1] for Example
4.3.

x Present method ADM[1] Error

0 1.000097858 1.000000000 9.78e− 05
0.01 0.999919060 0.999985975 6.69e− 05
0.05 0.998327374 0.999649410 4.71e− 04
0.09 0.430106143 0.998864262 5.36e− 04
0.1 0.998087022 0.998597927 5.10e− 04
0.15 0.996652859 0.996846403 1.93e− 04
0.17 0.995950198 0.995950082 1.16e− 07
0.2 0.994737695 0.994396264 3.41e− 04
0.5 0.974097483 0.965177780 8.91e− 03
1 0.867326358 0.863681104 3.64e− 03
1.5 0.708699578 0.705042495 3.65e− 03
2 0.513320805 0.506382315 6.93e− 03

where cq derived from the boundary conditions
and

∂y(x)

∂x
= w3w2w1f ′(w2f(w1x+ b1) + b2)

f ′(w1x+ b1), (4.12)

∂2y(x)

∂x2
= (w3w2w1)(w1f ′′(w1x+ b1)

f ′(w2f(w1x+ b1) + b2) +

w2w1f ′2(w1x+ b1)

f ′′(w2f(w1x+ b1) + b2)). (4.13)

We trained the network with 200 equidistance
points between 0 and 2, and by trail and error,
found that the most trainable four-layer archi-
tecture is two with 4 and 2 hidden nodes. Table
2 shows the comparison of the values of y(x)
obtained by the new method proposed in this
paper, and those obtained by Wazwaz [1].

4.3 Example 4.3

For f(x) = 1, g(y) = sin(y), A = 1 and B = 0,
Eq. (4.5) will be one of the Lane-Emden type
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equations that we solve:

y
′′
(x) +

2

x
y
′
(x) + sin(y) = 0, x ≥ 0 , (4.14)

subject to the boundary conditions

a) y(0) = 1,

b) y
′
(0) = 0.

A series solution obtained by Wazwaz [1] by using
ADM is:

y(x) ≃ 1− 1

6
k1x

2 +
1

120
k1k2x

4

+k1(
1

3024
k21 −

1

5040
k22)x

6

+k1k2(−
113

3265920
k21 +

1

362880
k22)x

8

+k1(
1781

898128000
k21k

2
2 −

1

399168000
k42

− 19

23950080
k41)x

10,

where k1 = sin(1) and k2 = cos(1).
We intend to apply UCNN method to solve Eq.
(4.14). We chose four-layer ANN consist of one
input unit and From Eq. (4.11) and using Eq.
(4.14), Eq is formulated as

Eq =
1

2
(
∂2y(x)

∂x2
+

2

x

∂y(x)

∂x
+ sin(y)) +

1

2
cq,

where cq derived from the boundary conditions

and ∂2y(x)
∂x2 ,∂y(x)∂x as Eq. (4.12)- (4.13).

We trained the network with 200 equidistance
points between 0 and 2 and by trail and error
found that the most trainable four-layer archi-
tecture is two with 3 and 6 hidden nodes. Table
3 shows the comparison of the values of y(x)
obtained by the method proposed in this paper,
and those obtained by Wazwaz [1].

5 Conclusion

In this study, some well-known classes of Lane-
Emden type equations were investigated by using
Unsupervised Combined Artificial Neural Net-
works. We used feed-forward neural networks

containing adjustable parameters; also, the re-
sults were optimized by using combined neural
network. We trained the Neural Network, and
after that we could obtain the result for every
point. We reported results and compared this
method with the numerical methods, the results
show that the solutions are so accurate in these
problems.
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